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Abstract 

The rational resolution analysis (RRA) is introduced and developed as a generalization 

of the integer-dilation multiresolution analyses (MRA) developed by Mallat and Meyer. 

Rational dilation factors are achieved by relaxing the condition on MRAs that successive 

approximation spaces be embedded. Conditions for perfect reconstruction are discussed and 

it is shown that perfect reconstruction is possible with specific constraints on the scaling 

function: the scaling filter must have its roots on the unit circle. Furthermore, the required 

arrangement of the roots indicate the scaling function must be derived from a ß-spline of 

some degree. It is proven the only compactly supported scaling function which satisfies 

these constraints is the Haar basis. Generation of wavelets for arbitrary integer dilation 

factors is an important part of RRA perfect reconstruction and an algorithmic approach 

to constructing these wavelets is presented. The frame properties of perfect reconstruction 

RRAs is presented and the notion of adjoint wavelets are made rigorous. It is shown the 

adjoint wavelets form a frame for Vo and that the corresponding decomposition is both stable 

and unique. Finally, the redundant representation of the detail coefficients is exploited as a 

solution to the specific emitter problem. Results demonstrate the RRA is far superior to the 

traditional MRA and wavepacket approaches when used as a feature extractor in Bayesian 

classification schemes. 

x 



The Rational Resolution Analysis: A Generalization 

of Multiresolution Analyses with Application to the 

Specific Emitter Identification Problem 

/.   Introduction 

1.1    Introduction 

Wavelet theory has emerged in the last decade and has provided a fresh perspective 

on many significant problems across a wide range of disciplines. Pioneered by the French 

geophysicist Jean Morlet as a tool for oil prospecting, the theory was brought to practical 

fruition by Stephane Mallat in his famous paper[27]. Mallat introduced the concept of a 

multiresolution analysis whereby a signal is decomposed by iteratively applying an approxi- 

mation operation which resulted in a representation of the signal "seen" at sucessively lower 

resolutions. By keeping the parts of the signal which is lost at each level of approximation, 

the "details," Mallat showed that the original signal could be exactly reconstructed starting 

with the lowest level approximation and successively adding more and more of the details. 

There were two remarkable things about Mallat's multiresolution analysis. First, the 

algorithms which implemented it were extremely fast; the approximation and detail oper- 

ations could be performed as discrete filter operations for which extremely fast dedicated 

hardware exists. The impact was similar to that of the introduction of the fast Fourier 

transform (FFT); it made the calculations practical for digital computers and led to many 

real-world applications. 

Secondly, in the paper which introduced the multiresolution analysis, Mallat provided 

a unifying framework for most, if not all, of the wavelet-like processing being done at the 

time. Mallat showed that the pyramid algorithms of image processing[8], the subband coding 
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and quadrature-mirror schemes of signal processing[32, 36, 37] were all essentially based 

on wavelet theory. The multiresolution analysis became the vehicle for the application of 

wavelets and wavelet theory across an even wider range of disciplines. 

Wavelet analysis and Fourier analysis are inextricably linked in the sense that much 

of the development of wavelet theory uses Fourier theory as building blocks. While the 

FFT had far-reaching impacts on society, some argued it was a victim of its own success. 

According to Yves Meyer, the French mathematician widely credited with helping Mallat 

write his monumental paper, "Because the FFT is very effective, people have used it in 

problems where it is not useful-the way Americans use a car to go half a block. Cars are 

very useful, but that's a waste of a car. [20] " Fourier analysis does not work equally well for 

all kinds of signals or for all kinds of problems. 

The main problem with Fourier analysis is that information about time is concealed. 

Fourier analysis is underpinned by sines and cosines which exist for all time. It assumes the 

frequency content of a signal is a homogeneous property of the signal and ignores transient 

behavior or changing frequencies. As Barbara Hubbard puts it, "[the Fourier transform] 

pretends, so to speak, that every instant of signal is identical to every other, even if the 

signal is complex as a Mozart symphony or changes dramatically as the electrocardiogram 

of a fatal heart attack. [20]" The Fourier transform takes a transient of a signal, a local 

property of a signal, and makes it to a global property of the transform. Wavelet analysis 

allows representation of a signal's transients since bonafide wavelets are localized in time 

having sufficient decay for a finite energy property. 

This dissertation mostly deals with multiresolution analyses of one form or another. 

Where Mallat's original multiresolution analysis was based on a dilation factor of two (each 

level of approximation has half the resolution of the previous), this research introduces the 

rational multiresolution analysis, or simply the rational resolution analysis (RRA), whereby 

the dilation factors taken from the set of rational numbers are considered. The properties 

of this new analysis are investigated and identified. As an example of its applicability, the 

rational resolution analysis is used to create feature vectors in the specific emitter identifi- 
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cation problem. The following sections detail the specific motivation for this dissertation, 

provide its specific objectives, describe the notation used throughout the document, and 

preview the remainder of the document. 

1.2   Motivation 

The multiresolution analyses ä la Mallat with integer dilation factors provide a repre- 

sentation of L2(R) which is "tight" in that it is complete without being redundant. In the 

Fourier domain, the dilation factor determines the ratio of the bandwidth of the approxima- 

tion filter at one dilation level to that of the next. This dissertation is primarily motivated by 

an apparent lack of knowledge in the general body concerning multiresolution-like analyses 

based on rational dilation factors. Rational dilation factors may be more appropriate in ap- 

plications where a logarithmic segmentation of the Fourier spectrum is desired, but greater 

freedom is needed in defining the bandwidths associated with the approximation spaces. 

Previous work by Auscher[4, 5] has discovered that no useful wavelet bases exist based 

on rational dilation factors when the wavelets are orthogonal from one decomposition level to 

the next. The resulting wavelets from such attempts were proven to exist, but lacked expo- 

nential decay and hence, were not bonafide wavelets in the sense that they lacked localization 

in time. By relaxing the condition that the wavelets be orthogonal across dilation levels, one 

can construct multiresolution analyses whereby detail spaces overlap in the Fourier domain. 

This overlap translates into a redundancy in the decomposition which can be exploited in 

certain applications. As a notional example, consider the case where a frequency of interest 

falls near the boundary between the Fourier representations of two adjacent detail spaces. 

Energy at that frequency has a divided representation; part of the energy is represented by 

wavelets in one detail space and part by the wavelets in the other. There is no clear winner. 

With a redundant representation, successive wavelet representations would provide a more 

accurate picture of how the energy is distributed throughout a particular signal. 

A secondary motivation for this dissertation involves the mathematical theory sur- 

rounding the development of a rational-dilation multiresolution analysis.   Questions that 
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quickly arise in this research are whether there exist functions that satisfy a dual system of 

two-scale equations and what are the characteristics of such functions. A function (j> which 

satisfies a two-scale equation satisfies 

<K*) = S K<i>{pt - n) 
n 

where the hn are the scaling coefficients and p is the dilation factor. A function which satisfies 

a dual system of two-scale equations is one for which a set of scaling coefficients exist for 

two different dilation factors. 

In the course of pursuing the motivations described above, several theoretical problems 

arise which have become ancillary motivations for this dissertation. They represent unique 

challenges which, when resolved, contribute to the overall state-of-the-art in multiresolution- 

like analyses and associated mathematical foundations. 

1.3   Scope 

This dissertation focuses on several specific objectives which clearly delineate its scope. 

Each of the objectives roughly translates to a chapter. The objectives are not independent 

since the achieving of one objective usually raises another issue, the resolution of which be- 

comes a subsequent objective. The remainder of this section briefly describes these objectives 

and their interrelationship. 

1. The first objective involves the the two-scale equation introduced in the previous sec- 

tion. Characterizing solutions to a dual system of two-scale equations, where the two 

dilation factors p and q are positive integers, is extremely important in studying the 

rational resolution analysis which is introduced later. With respect to this objective, 

certain questions naturally arise which this dissertation attempts to answer. Is there a 

class of compactly supported functions which solves the dual system of two-scale equa- 

tions? In the context of the Z^K) Hubert space, which solutions are self-orthogonal 
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with respect to their integer translations? The answers to these questions are a goal 

of this dissertation. 

2. The answer to the previous questions lead naturally into ß-spline functions. The 

second major objective of this research is to provide a rigorous algorithmic approach 

to constructing B-spline wavelets of arbitrary regularity corresponding to an arbitrary 

positive integer dilation factor. The relationship of this objective to the previous one 

will be made clear in the subsequent chapters. 

3. The third major objective is the determination of the frame characteristics of the 

rational resolution analysis. Specifically, that the "adjoint" wavelets associated with 

a rational resolution analysis form a frame for an arbitrarily fine approximation space 

of L2(R) will be proven. Furthermore, useful estimates of the frame bounds will be 

determined. 

4. The final objective is to apply the rational resolution to the specific emitter identifica- 

tion problem and demonstrate its applicability and perhaps its superiority to similar 

techniques. 

These four objectives, along with related secondary objectives, form the corners of a 

tetrahedron within which the scope of the dissertation is confined. However, in the course 

of research toward the objectives, questions arise which are related to the objectives but 

outside the scope of the work. These issues will either be identified in the final chapter as an 

area for future work or else discussed where they present themselves as an area of interest, 

but not within the scope. The relative overall importance of the issue will determine under 

which category it falls. 

1.4    Notation and Preliminaries 

I.4.I    Notation.      The following notation is used throughout this dissertation. 

I.4.I.I    Number Systems and Sets.       Table 1.4.1.1 lists the notation for the 

various number sets used in this document. 
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Symbol Meaning 
N the set of natural numbers: {1,2,3,.. •} 
C the set of complex numbers 
Z the set of integers 
z+ the set of non-negative integers 
Zp the set of integers modulo p where p 

Zp = {0,1,2,...,p-1}. 
GN: 

R the set of real numbers 

Q the set of rational numbers 
T the unit circle: T = {^C:|^| = 1} 

Table 1.1   Number Set Notation 

1.4.1.2    Vector Spaces. 

• Li(R) for the space of Lebesgue measurable and absolutely integrable complex-valued 

functions: 

Zq(R) = {/ : / is Lebesgue-measureable and / \f{x)\dx < 00}. 

• Z^R) for the space of Lebesgue-measurable, square-integrable complex-valued func- 

tions: 

L2QR) = {/ '• f is Lebesgue-measureable and / \f(x)\2dx < 00}. 
./R 

If / € I/2 (R) j / is sometimes referred to as a finite-energy function. With the following 

standard definition for the inner product, Z/2(R) is a Hubert space. 

• The standard inner product of /, g G I^R) wm be denoted by 

/oo   
f(x)g(x)dx, 

-00 

where the overbar represents complex conjugation. 
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• h(Z) for the space of square-summable sequences: 

h(Z)= la = (...,o_i,oo,oi,...): akeC,  £  \ak\2 < oo \. 
[ k=-oo ) 

With the standard definition of the inner product, hiZ) is also a Hilbert space. 

I.4.IS    Transforms and Operations. 

• The Fourier transform of a Lebesgue-integrable function / will be denoted by /. It is 

defined as 

f(0=[f(x)erießd*    fein 

For / € L2(R), an appropriate limiting definition for the Fourier transform must be 

used [10]. For / which is L2(R) but not Li(K), the Fourier transform can be defined by 

/(0 = lim / eW
xf(x)e-*xdx    f <E L2(R). 

A-K50./R 

• The 2-transform of a sequence x = (..., X-i, x0, Xi,...) is defined by the Laurent series 

X(z) = J2xkz-k 

kez 

where X is often called the symbol of the sequence x. The ^-transform does not converge 

for all sequences or for all values of z. For any given sequence, the set of values for 

which the ^-transform converges is called the region of convergence, abbreviated by 

ROC. 

• The Fourier transform of a sequence x is defined to be the symbol X restricted to the 

unit circle. This assumes the ROC of x includes the unit circle; the Fourier transform 

does not converge otherwise. Uniform convergence of the Fourier transform requires 

the sequence to be absolutely summable. The Fourier transform of sequences which 

are not absolutely summable, but which have finite energy (square summable) can be 
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defined in a manner analagous to the continuous case with an appropriate limiting 

operation. For instance, the Fourier transform of the sequence 

xln) =  
irn 

converges in a mean-square sense to a discontinuous periodic functional]. 

• The Kronecker delta function, 6, is defined in two forms depending on the domain. 

The proper form will be clear from the context. For 6 : Z —► R 

1,   k = 0 
6(k) = 6k = 6kfi = 

otherwise. 

It is often seen with two arguments, for which is defined: 6(j, k) — 8j^ = 8{j — k). 

• The characteristic (indicator) function x : R -> R is denned for a subset A C R. 

l,   teA, 

lo, 
XA(t) =   . 

otherwise. 

• Given a polynomial F : C —♦ C, let Z{F) be the zero set of F: 

Z(F) = {z € C: F(z) = 0} 

1.4.2    The Orthonormalization Technique. One technique which will be used 

throughout this dissertation is the "orthogonalization trick" attributed to Daubechies[15]. 

It is best described by example. Given a function g G .^(R) whose integer translations 

form a Riesz (unconditional) basis for some Hilbert space H C Li (R), there is an invertible 

operator T which maps the sequence 

G = {gn}nez 
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where gn = g{--n) to an orthonormal basis[15], {7fc}*ez of H. An orthonormal basis satisfies 

\7ti) 7m/ = 0m-n 

which can be written equivalently via the Poisson summation formula 

£|7(£ + 27rfc)|2 = l    a.e.£<E 
*ez 

Then we can define T by 

m = (Tg)(t) = ^ TIT? 

\fc€Z / 

so that 7 is an "orthonormalized" version of g. The denominator in the definition does not 

vanish as a consequence of g forming a Riesz basis for H which is equivalent to the existence 

of positive constants A and B such that 

^ll/ll2<EK/.^)r<5ll/ll2   vfzn- 
n 

This Riesz condition will have some usefulness in the discussion of frames later in the disserta- 

tion. Frames differ from Riesz bases in that frames are not necessarily a linearly independent 

set. 

I.4.3    The Downsample Operator.     The downsample operator defined below is used 

periodically throughout this dissertation. 

Definition 1.1. Given a sequence x with corresponding symbol X, and a subsample factor 

pEN, the subsample (or downsample) operator, Dp, is defined by 

(DpX)(*) = ^X;X(r<(2)) 
" 1=0 
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where ri(z) is the Z-th p-xoot of z. Specifically, with z = re™, rj is defined for I 6 Zp by 

rj(*) = rVPe^W/p    u € [0> 27r). 

It is assumed that 2 is restricted to the region of convergence of DPX. 

For z = re™, 

(DpX)(re™) = -^(r-1^^2»"*) 

1 P-i 
= - J] Yix(n)rn/pe-in^+M)/p 

P 1=0   n 

1 P-l 
= J^a;(n)r-ri/pe-ina'/p- £ e_i2,r'n/p 

n P J=0 

= 5>(pn)(re*r» 

= ]^a;(pn)2 n. 

The last step is a consequence of 

1 P_1 ( 
t V^ e-t27rJn/p _  J 

0,   otherwise. 

The final expression for DPX above indicates why it is called the downsample operator; only 

the p-th elements of x are kept. 

1.5   Preview 

As was mentioned earlier, this dissertation has specific objectives which form the back- 

bone of the research. Each chapter is primarily dedicated to an objective and the chapters 

flow according to the logical progression of the objectives. 

Chapter II begins the dissertation with a brief review of multiresolution analyses of 

Z,2(M) which includes a discussion of wavelets and scaling functions and the discrete filter 

operators which form the algorithmic heart of the MRA. Spline-based scaling functions and 
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wavelets are important to the rational resolution analysis and their properties are discussed. 

The chapter concludes with a formal introduction to the rational resolution analysis (RRA). 

The associated filter operations are discussed for both analysis and synthesis and the re- 

quirements for exact (perfect) reconstruction are derived and presented. 

Chapter III is primarily concerned with the existence and characterization of the class 

of compactly supported RRA scaling functions which result in perfect reconstruction. The 

dual dilation symbol equation is presented and solutions are characterized in detail with the 

development of several novel theorems. The chapter concludes with a characterization of the 

class of scaling functions for which the associated RRA yields perfect reconstruction. 

Chapter IV deals with the algorithmic construction of spline-based wavelets which com- 

plement the scaling functions introduced and used in Chapters II and III. Semi-orthogonal 

wavelets are presented as a means of constructing orthogonal ones. The algorithmic develop- 

ment is framed as finding a set of vectors which span the nullspace of a particular operator 

related to the scaling function. The completeness of the method is proven. The chapter 

concludes with a three-step pseudo-algorithm to contstruct spline-based wavelets bases with 

an arbitrary dilation factor and regularity. 

Characterizing the extent to which the wavelets associated with an RRA form a frame 

for L2(R) is the topic of Chapter V. The analysis focuses on two fundamental questions. 

First, is the RRA wavelet decomposition unique to a particular Z^R) function, and second, 

can every Z^R) function be represented in a stable way. Stability is equivalent to continuity 

and implies that if two sets of RRA wavelet coefficients are "close", then the Z^R) functions 

reconstructed from these sequences are "close" as well. In this context, the metric induced 

by the inner product norm is used to define closeness. The uniqueness and stability of the 

RRA decomposition can be characterized by what are known as the frame bounds. This 

chapter provides estimates for these frame bounds which are functions of regularity and, of 

course, dilation factor. 
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Chapter VI provides the details of an application of an RRA decomposition a real- 

world problem. The specific emitter identification problem is one in which a particular 

radar system must by identified by one pulse of its collected signal as being one from a set 

of which are intended to be identical. That is, a radar system must be identified at the 

serial number level. This chapter develops a feature extraction scheme using the RRA and 

entropy calculations. Classification performance using these features is compared to similar 

non-RRA techniques with remarkable results. 

Chapter VII is the final chapter in the dissertation and provides a summary of the 

research. Conclusions are made and recommendations for further work outside the scope of 

this dissertation are presented. 
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77.   Mathematical Foundations of the Rational Resolution Analysis 

2.1 Introduction 

This chapter introduces the rational resolution analysis (RRA). The theoretical foun- 

dations of the RRA are found in the standard multiresolution analyses with dilation factor 

p = 2 and its natural extension to integer dilation factors p > 2. Scaling functions and 

wavelets are discussed as they pertain to both multiresolution and rational resolution anal- 

yses. Approximation and detail spaces are reviewed along with the associated projection 

operators which form the heart of the analysis. 

The 5-spline scaling functions are given special treatment. They have unique prop- 

erties which are both useful and necessary in the RRA. In fact, it is shown later in this 

work that the spline-based scaling functions and wavelets are the only such class of functions 

which satisfy the unique requirements for perfect reconstruction with the RRA. 

The final section of this chapter provides a formal definition of the RRA. It describes the 

analysis (or decomposition) operators in terms of discrete filter operations. It also presents 

the scheme for reconstruction which highlights the necessary and sufficient conditions for 

perfect reconstruction. 

2.2 Integer Dilation Multiresolution Analysis 

This section reviews the standard multiresolution analysis of Mallat[27, 28] and Meyer [29] 

and its generalization to arbitrary integer dilation factors [1, 33]. 

2.2.1    Definitions and Preliminaries. 

Definition 2.1.    A multiresolution analysis (MRA) of Z,2(R) (with dilation factor p€N) 

is a sequence {Vjjfcgz of closed subspaces of Z/20&) such that the following hold: 

1. The approximation spaces are embedded: V* C Vk-\, k € Z. 
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2. The approximation spaces satisfy 

C\Vk = {0}   and   \JVk = Li(R), 
feez fcez 

3. / € Vh *=* /(p.) € Vi_i     VfcGZ, 

4. /e^=^/(-^)Gyt   VfceZ. 

Furthermore, there exists a scaling function <j> € Vo such that {^fc,n}nez forms a Riesz 

basis basis for Vk so that 

Vfe = span{0jfcin}nez, 

where 

<t>k,n=p-k/2<l>{p-k--n). 

■ 
The integer translations of <f> are not necessarily orthogonal, but with Daubechies'[14] 

"orthonormalization trick", we can find an orthogonal basis with no loss of generality. It is 

described briefly in the first chapter. In what follows, we assume {<£o,n}nez is an orthonormal 

set. 

The detail space, Wk, is defined as the orthogonal complement of Vk in Vk-i. The 

existence of Wk for integer dilation factors has been proven in [33] and [27] among others. 

This means 

Wk±Vk 

Wk C V*_i, 

and 

vk@wk = vk.1. 
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In general, the detail space is spanned by the integer translations of p— 1 linearly independent 

wavelets, ip^ for j = 1,... ,p — 1. That is, 

WJ? = sPan{Vg}„eZ 

and 

wk=
pj:w!f\ 
J=I 

where the summation is used to mean the direct sum of the spaces and 

^S=p-*/a^)(p-**-n). 

In the case where the -0^ are all orthonormal with respect to all dilations and translations, 

i.e. (ipk n> Vk> n') = öjd'ökjt't>n,n', the expression for Wk above can be written as an orthogonal 

sum instead of a direct sum. 

An element / € L2W can De represented as a linear combination of these integer- 

indexed wavelets ip£n 
m *ne following manner. The approximation of / at the fc-th resolution 

level is the orthogonal projection of / onto Vk. We write 

Pkf evk=* (Pkf)(t) = J»*,,^), 
n 

where Pk is the orthogonal projection operator, Pk : L2(E) —► Vk, and 

Ck,n = (/) 0fc,n) 

are known as the approximation coefficients. The approximation at level A; is entirely char- 

acterized by the sequence ckyU for n € Z. We can define a similar projection operator to 

project / onto Wk: 

Qkf = Y,Qk
j)feWk 
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Figure 2.1    Approximation Spaces and Projection Operations 

with 

iü) ,/,Ü) «i?7)(t) = £CO)   i € {1,2,... ,p - 1}, 

where the rf^„ are known as detail coefficients and are defined similarly to the CfciTt. From 

these two projections, we can reconstruct the approximation of / at the m — 1 level by 

P-i 

Pk-if = Pkf + EQkf (2.1) 
i=i 

This is illustrated graphically in Figure 2.1. It is shown in [28] for dilation factor p = 2, and 

later in [33] for aribitrary p € N that 

@Wk = L2 
fcez 

which implies that all p dilations and translations of the mother wavelet ip form an or- 

thonormal basis for .^(R). The multiresolution framework provides an efficient and elegant 

algorithm to find the approximation and detail coefficients at each resolution level by using 

discrete filters on the approximation coefficients of the next higher level. Each successive set 

of approximation and detail coefficients can be calculated from the previous set of approxi- 

mation coefficients and this calculation is independent of level. 
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To see this, consider the scaling function faß. Because we have V\ C Vo, we can express 

(^o as a linear combination of <^o,fc 

<t>i,n = p-^i-p-1 - ») = E M*M - *)• (2-2) 
k 

where 

hP(n) = {<f>lfi, <f>o,n)- (2-3) 

Taking the Fourier transform of both sides of Equation 2.2 for n = 0 yields 

te)=p-1/2#p(e*)<fe), (2.4) 

where Hp is the Fourier transform of the sequence hp: 

Hp(e«) = j:hp(k)e-*k. 
k 

The function Hp acts as a filter in the sense that the Fourier transform of the lower reso- 

lution scaling function, (^o, is found by filtering 0o,o by Hp. This filter has a great deal of 

significance in the multiresolution analysis. Mallat[28] has demonstrated that approximation 

coefficients c*,« at one level can be easily calculated from the approximation coefficients of 

the previous level by using the coefficients of the filter Hp for the case p = 2. The extension 

for arbitrary p € N is 

Ck,i = X) hp(n ~ Pl)ck-l,n- (2.5) 
n 

Notice that the approximation coefficients Ck,n, which completely characterize the approxima- 

tion, can be calculated without having to calculate the inner product of / with (j>k,n directly 

except for some initial approximation level. This is the elegance of Mallat's algorithm. 

The detail coefficients dk
3'n can also be calculated from the Cjfe_i,n in a similar way. If 

we define 

9P
j)(n) = {4%<l>o,n)    je{l,2,...,p-l} 
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Figure 2.2   Illustration of the p-Dilation Multiresolution Analysis 

then, taking Fourier transforms, we get 

p1/2^(pO = G«\e«)fo), (2.6) 

with G^\e^) denned to be the Fourier transform of g^\ Now, at each resolution level 

k in a multiresolution decomposition, we get a set of detail coefficients {djj?,n}nez for j = 

1,2,... ,p - 1. With G = £j=i G^i this is illustrated in Figure 2.2. As the number of 

decompositions grows without bound, the function will be represented by the sets of detail 

coefficients 

Using the approximation and detail coefficients at a particular resolution level k, we 

can reconstruct the approximation at the k — 1 level by using the same filter coefficients 

p-i 

c*-i,n = S hp(n ~ Pl)Ck>1 + Z) 13 9p\n ~ Pl)d>k}' 
l j=l   I 

This is a consequence of Equation 2.1. 

2.2.2 Filter Operations. The niters Hp and Gp^ are very important. However, as 

Daubechies points out in [14], Mallat's algorithm deals only with sequences; the underlying 

multiresolution analysis is only used in the computation of the filters Hp and G^\ Daubechies 
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studied the filters and determined they had certain properties which allowed Mallat's discrete 

algorithm to be "weaned" from its multiresolution parent. 

By defining Hp and G^ as bounded operators from Z2(Z) to itself: 

(Ha)fc = 53 Kn ~ Pk)an, 
n 

(G^^^g^n-ph)^, (2.7) 
n 

Daubechies showed that necessary conditions for Mallat's algorithm to work could be ex- 

pressed as 

J2\hp(n)\<oo 
n 

2>«(n)|<oo    j€{l,2,...,p-l}. (2.8) 
n 

which is equivalent to requiring the filter sequences hp and g^ for j G {1,2,... ,p — 1} to 

elements of Zi(Z), absolutely summable sequences. In the signal processing community, they 

are known as a stability requirements [31]. We want to perfectly reconstruct a sequence from 

its decomposition, so with the adjoint operators H* and G^* given by 

(H*a)n = 53 hp(n ~ Pk)ak, 
k 

(G^o),, = £ #(n - pk)ak,     j{l, 2,... ,p - 1}, (2.9) 
k 

we also require a resolution of the identity by 

p-i 
HH* + J] GÜ)G(>> = 1, (2.10) 
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where 1 is the identity operator on li(Z). Similar to the requirement that the detail and 

approximation spaces be orthogonal, we require 

G^G»* = 0    yi,je{l,2,...,p-l},i^j 

HG^> = 0    Vje{l,2,...,p-1}. 

Finally, approximation and detail roles are assigned to the operators by requiring 

n 

£#W = 0,     Vje{l,2,...,p-1}. (2.11) 
n 

The properties described above are identified by Daubechies[14] as the essence of Mallat's 

algorithm. They are the conditions which allow you to separate the algorithm from the 

multiresolution analysis. This is important since it allows the transition from an elegant 

theory to a practical implementation. 

2.2.3 Scaling Functions and Wavelets. The scaling functions and wavelets are 

related to the approximation and detail filters H and G^\ respectively. Conditions on these 

filters were presented which allow Mallat's algorithm to work. This section reviews how 

these conditions affect the scaling functions and wavelets. The following definition is useful 

for that discussion. 

Definition 2.2.   The regularity polynomial, Sp, with degree p €: N is defined by 

SP(z) = -Y/z-n    zeC (2.12) 

Equations 2.4 and 2.6 express the relationship between the filters and the corresponding 

basis functions. Iterating Equation 2.4 and implicitly redefining Hp to include the scaling 
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factor p 1I2 yields 

fa) = HO) II HP(e*»-k), (2.13) 
Jb=l 

provided the infinite product converges. Thus, the scaling function is determined by the 

iterated product of the approximation filter. Since we assume (j> exists, we assume this 

infinite product converges. In addition, one necessary property of the scaling filter is that 

Sp must divide Hp denoted by 

Sp | Hp. 

where Sp is the p-th order regularity polynomial defined above. That is, the scaling filter 

must have at least one regularity spectral factor [9, 15]. This characteristic is discussed in 

the next paragraph. The corresponding wavelets can be found, provided one has G^\ by 

substituting the expression for 0 above into Equation 2.6 and changing variables to get 

4,^(0 = #0)G£>(£/p) fi Hp(e«P-k). (2.14) 
Jfe=2 

We mentioned earlier that we want the scaling functions and wavelets to look rel- 

atively "nice" (continuous, differentiable, etc.) which implies they are somewhat regular. 

Daubechies[14] has shown that a necessary condition for the iterated scaling function in 

Equation 2.13 to converge to a regular function is that the filter Hp(e^) have zeros of suf- 

ficiently high degree at £ = 2nl/p for I € {1,2,... ,p — 1}. This causes the zeroes of one 

dilation of Hp in Equation 2.13 to attenuate the peaks of the previous dilation. As Hp is 

successively dilated and multiplied in the infinite product, the high frequency peaks will be 

attenuated. The greater the degree of the zero, the more attenuation occurs in the high fre- 

quencies and the time-domain function is more regular. Consequently, for a regular scaling 

function, we must have Hp(e1^) of the form 

HP{S) = (Sp(e*))mC{e*)    m > 1 (2.15) 
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where Sp is the regularity polynomial defined earlier.  With that definition, the sequence 

hp(n) is formed by m-fold discrete convolutions of the sequence 

sP(n) = \P      "" "*• (2.16) 
0      otherwise 

with the sequence I, where 

£(e*) = £Z(n)e-*n. (2.17) 
n 

The most significant contribution of Daubechies' work in [14] is the development for p = 2 

of a set of scaling functions (and thus wavelets via Equation 2.14) which are compactly 

supported and have an arbitrary degree of regularity. Equivalently, an approximation filter 

is found which has the form of Equation 2.15 and also satisfies the conditions of an MRA. 

If the sequence I is finite, then hp{n) will be finite and the scaling function generated by 

iterating Hp(e^) will be compactly supported[14]. 

2.3   Spline-Based Scaling Functions 

This section describes a class of scaling functions whose importance will become evident 

in subsequent chapters. The ra-th order cardinal B-spline, Nm, is defined recursively by: 

Ni = X[o,i) 

Nm = 7Vm_! *N1= f Nm^(- - t)dt. 
Jo 

It is the m-fold convolution of Nlf the characteristic function on [0,1). The cardinal B- 

splines have many useful properties which facilitate their manipulation (see [11]). There are 

two that are the most important in the context of this dissertation. 

First, iVm satisfies a dilation equation for every p 6 N. That is, given a dilation factor 

p, we have 
m(p-l) 

Nm(t)=    £    ßp(k)Nm(tp-k), 
fc=0 
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where \LP is the sequence constructed by the ra-fold discrete convolution of sp, the regularity 

sequence denned earlier in Equation 2.16 . Note that, with the exception of JVi, the integer 

translates of Nm do not form an orthogonal set. 

The second property is related to this lack of orthogonality. In order to "orthogonalize", 

it is necessary that the Euler-Frobenius polynomial, Exm, generated by Nm, 

m—1 

ENm(e*) = Y,\Nm(Z + 27TA;)|
2
=   E   N2m(m + k)eikt 

fceZ fc=l-m 

not vanish for £ G [0,27r). Chui[ll] proves that, indeed, this is the case for the cardinal 

ß-splines and provides the following bounds: 

o < E lfö(* + 27r*0l2 ^ E Kfc + 27rfc)l2 ^ L 
fcez fcez 

This implies the cardinal ß-splines can always be "orthogonalized" which will become im- 

portant later. 

While orthogonalizing the B-spline is important, it is more important algorithmically 

to have an expression for the corresponding orthonormal scaling filter Hp. Let <f> be the 

orthonormalized version of Nm for an arbitrary m € N: 

to =      C(« 
E*|JVm« + 2rt)|2 

The scaling filter Hp must satisfy 

Substituting for (f> in terms of the ATm, 

2\V2 

HP{^) = Nm(0     \Zk\Nm(pt + 2Trk)\\ 
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1/2 

=M(e«)(!#ar 
^    '{ENje'Pf)) 

where M(e,f) = £fc ßp(k)e~%k^. In the more general case where 

the orthonormalized version of F is given by 

1/2 

MO    >V ){(Dp(\F\>ENm)(e&))     ' 

where .Dp is the downsample operator discussed earlier. The more general form will be useful 

in calculating orthogonal detail filters which will be discussed later. 

2.4    The Rational Resolution Analysis 

The rational resolution analysis (RRA), the main topic of this dissertation, is a rela- 

tively new concept and has little or no literature currently available[l, 2]. However, there are 

two notable items which are related to the research at hand and it is appropriate to mention 

them here. 

The first is the work of Pascal Auscher in both [4] and [5]. Auscher has shown that 

multiresolution analyses with rational dilation factors are possible and that the corresponding 

wavelets form an orthonormal basis for L2QR). However, the wavelets are neither compactly 

supported nor do they have exponential decay. Non-compactly supported wavelets are still 

useful, but without sufficient (exponential) decay, their usefulness diminishes. Sufficient 

decay is necessary for good localization in time (or position). Without good localization, the 

wavelets' usefulness in analyzing non-stationary signals is limited. This is the main reason 

for the development of wavelets. 

The second item is not as important as the first but has some relevance. Kovacevic 

and Vetterli have done some work[22, 23, 24] on perfect reconstruction filter banks which 
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have rational sampling rate changes. Their work is significant in that the RRA developed 

in this section involves rational sampling rate changes, but their work does not deal with 

additional constraints imposed by multiresolution/rational-resolution framework. 

2.4.1    Definitions and Preliminaries. The definition of the rational resolution 

analysis (RRA) is similar to MRA with the exception that the requirement for embedded 

approximation spaces is relaxed. Relaxing other requirements of MRA definition lead to 

other constructions. For instance, if the integer translates of the scaling function <f> only 

form a frame [38] for the approximation space Vo, Benedetto and Li [7] define the frame 

multiresolution analysis (FMRA). 

Throughout the remainder of this dissertation, let r be a rational number defined by 

r = p/q where p,geN with p > q. Furthermore, assume that p and q are relatively prime 

denoted by gcd(p, q) = 1. 

Definition 2.3. The rational resolution analysis (RRA) of L2OR) (with dilation factor r, 

described above) is a sequence {Vjjjfcgz of closed subspaces of Z^R) such that the following 

hold: 

1. The spaces are ordered: Vk < Vk-\ k G Z where the ordering is defined by 

Vkl < Vk2 <fF=^h> k2. 

2. The approximation spaces satisfy 

f|^ = {0}    and     \JVk = L2 
fcez fcez 

3. / e Vi <=► /(r-) € T4-i    Vfc € Z 

4. / e Vk « /(• - r-kn) e Vk    V^neZ 

Furthermore, there exists a scaling function <f> € L2W such that {</>k>n}nez forms an uncon- 

ditional (Riesz) basis for Vk where <j>k,n(t) = r~k/2<fr(r~kt — n). ■ 

2-13 



The definition is very similar to the MRA. As mentioned above, the significant differ- 

ence is that the approximation spaces have a different ordering from the ordering ased upon 

reversed set containment. The approximation spaces of an RRA are sometimes embedded, 

however. Since the integers are a subset of the rational numbers, the RRA becomes an MRA 

when q = l and the approximation spaces are embedded. In this sense, the RRA generalizes 

the MRA. 

2.4.2   Rational Resolution Approximation Operators. Let fk-i be an arbitrary 

element of Vk-i. The orthogonal projection of fk-\ onto Vk is given by 

Pvkfk-1 = ^2{fk-l,<f>k,n)^k,n 
n£Z 

= $3 ^2 ck-l,l(0fc-l,J» <!>k,n)<j>k,n 
n,l€Z 

where the last step involves writing /*_! = £n Cfc-i,n</»fc-i,n since /k_i € Vk-\. To analyze the 

inner product in the preceeding expression, consider the following derivation of its conjugate 

(0k-l,n, <l>k,l) = {<t>k,h &-l,n) 

= (01.J, 0O,n) 

= 2^(&.»»0O,n) 
4/2 

= r-^jjH)me^n-rM 
(pq)1/2 

2TT 

= hr(qn-pl) (2.18) 

where Hr(u) = <Jw${pui)<j>{qu). At this point, we know nothing of the periodicity of Hr. 

In the following section, further requiring the scaling function to satisfy integer dilation 
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equations will impose a great deal of structure to Hr and hr. The end result is that 

(0jfc-i,n, <f>k,i) = hr(qn - pi) 

and 

Pvk+1fk = 2 S ck,nhr(qn - pl)(f>k+i,i. 
nez2ez 

Thus, similar to Equation (2.5) the projection from one approximation space to the next can 

be written as a discrete filter operation on the approximation coefficients 

Ck,i = 5Z hr(qn - pl)ck-i,n. 
n 

If {cfc-i,n}nez is considered a discrete-time signal, then the operation described above is 

effectively a rational sampling rate change[31]. The approximation coefficients are upsampled 

by a factor of q, filtered via hr, and downsampled by p. The role of the filter is to prevent 

aliasing. 

CO u Hr iv C\ 

Figure 2.3   Processing Diagram for Rational Resolution Approximations 

It is important at this point to mention one of the fundamental differences between 

the MRA and RRA. With the MRA, the projection from one approximation space to the 

next is equivalent to the projection from Z^R) to the particular approximation space. That 

is, given an arbitrary / G Z^K) and Vk a subspace of an MRA 

fk = PvJ- 

This is a consequence of 14 C Vy for k > k'. With the RRA, we have the recursive definition 

fk = Pvkfk-i- 
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This definition relies on property (2) of the RRA definition. Given an arbitrary / G L2( 

there exists a sequence of functions /* G V* which converges to /. That is, there exists a 

K(e) e Z sufficiently negative such that 

\\f-PvKf\\<e 

for any arbitrarily small e. This fact is given a more thorough treatment in §5.3.2. of 

[15]. Daubechies' proof does not depend on the dilation factor and only requires the scaling 

function satisfy a Riesz condition. Thus, since we assumed the scaling function provides an 

orthonormal basis so that the Riesz conditions are satisfied, her analysis is directly extendable 

to the RRA and provides justification to the Equation 2.4.2 above. 

This difference between the RRA and MRA is generally not a problem in practice since 

the discrete-time filter implementation of the RRA projection is defined between adjacent 

approximation spaces just like the MRA. However, in order to have fk = Pvkf at each level 

for the RRA, we must abandon the fast filter implementation of the projection operator 

and calculate the inner products analytically for each /. This is because the approximation 

spaces are not embedded and hence PvkPvk-!f 7^ Pvkf hi general. (This characteristic causes 

some difficulties when looking at the frame properties of the RRA which will be discussed 

in Chapter V.) However, in practical uses for which / is assume to live in one of the 14, fast 

algorithm exist which are analogous to those in the MRA case. 

2.4.3 Rational Resolution Reconstruction. Reconstruction in the RRA is more 

complicated due to the approximation spaces generally not being embedded. Recall, with 

the MRA, an element of a particular approximation space can be written as an orthogonal 

decomposition of its projection onto the next lower approximation space and the corre- 

sponding detail space. This is generally not possible with the RRA. Consider two adjacent 

approximation spaces Vo and V\ and assume the set D = Vi\Vo is non-empty. Then there 

is no orthogonal detail space that would sum with Vi to form Vo- The elements of D could 

not be "cancelled" by any element in an orthogonal detail space. This suggests a processing 
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scheme on Vi which ehminates the elements in D and combines with some orthogonal detail 

space to form Vo- This is the approach taken in this research. 

Define the sub-approximation spaces VI by 

Vl = span{p-1/20Jfe_ln(./p)}n6Z 

= span{9-1/2</,fcri(./g)}n6Z. 

The normalization constants above are not necessary for the definition of V^., but are used to 

normalize a Riesz basis for the space. If <f> satisfies a dilation equation based on p, then we 

have VI C Vk-\ in exact analogy to the MRA. Furthermore, we have a detail space which the 

orthogonal complement of Vl in 14-1- Thus, perfect reconstruction is suggested via MRA 

techniques described earlier. This is illustrated in Figure 2.4.3. 

Decomposition 
Reconstruction 

Vm-x 

Q? 
m+l 

Figure 2.4   Illustration of the p/g-Dilation Rational Resolution Analysis 

In order to ensure this scheme will work, it is necessary to have 

f'k = JWfc.! = Pv<Pvkfk-l,       VA_x € Vk-L (2.19) 

Some implications of this condition are presented in the following theorem. 
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Theorem 2.4. Let Vk and Vk be as defined previously for some rational dilation factor 

r = p/q. Then 

Pvtfk-1 = Pv>Pvkfk-i,     V/*_i € VU 

is equivalent to Vk C Vk. 

Proof. Let fk-X be chosen arbitrarily in Vk-\. Suppose Equation 2.19 is valid. Without 

loss of generality, let k = 1. When {</>fc,„}„ez and {<j>'k,n}nez are Riesz bases for Vk and 1£', 

respectively, the following analysis holds: 

Pv{PvJo - Pv{ 53(/<>> 01,n)01,n 
n 

= 53 5Z(/0, <l>l,n){<f>l,n, 0i,f)0i,J 
I     n 

= 53 53 (/o> (01,«' 0i,f)01,'>) 01,1 
|     n 

= 53 53 (/«>» (01,*' 01,n)01,n) 01.J 
J     n 

However, 

which implies 

= 53 ( /o» 53(01,/' 01,n)01,ny 0i,j. 

A^'/O = 53(/o> 0i,j)0i,j 

01,1 = 53(^1,1' 01,n)01,n 

since /o € Vo arbitrarily.   From this equation ^ is a linear combination of the <f>i>n.   It 

follows immediately that this is equivalent to having V{ C V\. 

Assuming V{ C Vi, and hence 

01,/ = 53(01,2' 01,n>01,n, (2.20) 
n 

the derivation can be reversed to show Equation 2.19 holds. 
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The perfect reconstruction scheme assumes the scaling function satisfies a p dilation equation 

and Theorem 2.4. indicates that it must also satisfy a q dilation equation (via Equation 2.20). 

Thus, for the remainder of this chapter, we will concern ourselves only with those scaling 

functions which satisfy the dual dilation system 

*_t)Jv*S.'W»-*)*!>-»)_ (2.21) 
[ VqEnhq(n-qk)<j)(q--n) 

where the hp and hq are defined below. 

With such a scaling function, the reconstruction scheme is as follows. Given an arbi- 

trary function fk-i € Vk-i, then 

/*-i = Pv'fk + £ Q^fk-i (2.22) 
3=1 

where the Q® are the orthogonal projectors onto the p — 1 detail spaces associated with a 

p-dilation MRA partition of Vk-\. 

This scaling function assumption allows the orthogonal projection Pyk to be written in 

more detail. As with the MRA, define the following sequences: 

hp(n) = ((f)'kfi, <f>k-i,n)    n € Z 

hq(n) = {<f>'kfi, (j)ktn)    neZ. 

Then, hr denned in (2.18) can be explicitly written in terms of hp and hq via the following 

analysis. Define Vk_x by 

VfcLi = span{g1/20A._ln(g.)}neZ 

= span{p1/2^fcn(p.)}neZ. 
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Since <f> satisfies the pair of dilation equations, we have Vk-i C Vk" and Vk C V£_v Let <f>l_x 

denote the orthonormal scaling function associated with Vk"_v Then, 

{<f>k,h <t>k-i,n) = (£ hp(j - pl)^, Y, hq(i - qn)^ ) 

3      * 

3      » 

= Y,hp(j - pl)hq(j - qn) 
3 

= hr(qn — pl). 

Recall that we defined hr previously in the same way. With the requirement that <f> satisfy 

dilation equations based on p and q, the composition of hr is made explicit. In the Fourier 

domain, we use Equation 2.18 to write 

hr(qn - pi) = ^L jf fooJtiÖe^-rtdt 

= ^ J^Hp{e^)H^\m\2e^n-pM 

4ET Hp{S)Hj&)\fo + 27TA0IV«"1-*^ 

= i- F Hp{e*)H&?) Y, m + 27rh)\2ei^n-rtdt 
27r J° k€Z 

= -L F Hp{S)HJ^)e^qn-^d^ 

which implies ifr = HpHq is the discrete Fourier transform of hr. The last step in the 

analysis is due to the orthogonality of the integer translates of (j> 

{4k,n, <l>k,m) = Sn,m «=► £ \Ht + M)? = 1      a-e- ^ R 
I 

This definition of Hr is a slight abuse of notation since we have previously defined Hr(u) = 

y/pq(f>(pu)(f)(qu)).  Via the analysis above, this current definition of Hr can be seen as the 
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27T-periodization of the previous definition. The two definitions are not inconsistent with 

one another in the sense that we evaluate the inverse Fourier transform of Hr only at the 

integers to get hr. In the previous case hr is a continuous function sampled only at the 

integers and in the current case, hr is a sequence whose domain is the integers. The integer 

values are the same. The difference comes about from our assumption in the latter case that 

(j) satisfies 2-scale equations for both dilations p and q so that we have scaling sequences hp 

and hq. The original development made no such assumption. 

2.5   Summary 

This chapter has provided a mathematical launching point for the following chapters. 

The RRA was rigorously defined and the various projection operators in terms of discrete 

filters were described. Necessary and sufficient conditions for perfect reconstruction within 

the RRA framework were presented. All this description was couched within the notation of 

existing multiresolution paradigms. In fact, the multiresolution analysis fits within the RRA 

framework as a special case. This is expected since the integers are a subset of the rational 

numbers. 

The next chapter studies scaling functions and wavelets associated with a perfect- 

reconstruction RRA. It further examines the existence and characterization of such scaling 

functions and wavelets which are compactly supported. The results are surprising. 
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III.   Compactly Supported Orthonormal RRA Scaling Functions 

3.1    Dual Dilation Symbol Requirement 

This chapter presents an analysis of the existence and characterization of compactly 

supported, orthonormal scaling functions which yield perfect recontruction in an RRA. The 

analysis centers on the dual dilation requirement described briefly in the previous chapter 

and further discussed below. 

The synthesis scheme presented in the last chapter relies on the scaling function satis- 

fying a pair of dilation equations 

or in the Fourier domain, 

AHO-IC^*0      <6* (3'lb> 
where Hp{z) = Y,nhp(n)z~n. The two Fourier domain expressions can be substituted into 

each other to yield 

which implies 

Hp(z<)Hq(z) = Hq(z>)Hp(z)     1*1 = 1. (3.2) 

This dual symbol dilation requirement implies several interesting properties of the associated 

scaling function. This remaining sections of this chapter are primarily focused on the re- 

quirement and how it affects the existence of orthogonal and/or compactly supported scaling 

and wavelet functions. 
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3.2   Root Loci 

In a separable Hilbert space, two bases {(fj}jez and {<fk}kez are duals if they satisfy 

(<Pi,$k) = 6j*   Vj.fceZ. (3.3) 

Orthonormal scaling functions and wavelets are desirable in resolution analyses since they are 

self-dual[ll] (or self-reciprocal[21]) in the sense that that {tpj} = {<pk} so that fa, cpk) = 6j,k- 

This means the analysis and synthesis kernels are identical so that one filter works for both 

operations. There has been significant work in the area of biorthogonal wavelets[13, 34] 

in which the analyzing and synthesizing are not identical but merely duals of one another, 

i.e. one filter is used for analysis, and one for synthesis. For the most part, this research is 

concerned solely with orthonormal wavelets, but biorthogonal scaling functions and wavelets, 

and duality in general, will be mentioned briefly in later chapters. 

Scaling functions and wavelets with compact support are also desirable in resolution 

analyses since they correspond to finite scaling and detail dilation sequences (hp and gV') as 

well[14]. In signal processing terms, this is equivalent to filters with finite impulse response 

(FIR) which allow for fast, efficient implementations. 

In this section, two theorems are presented which provide a good foundation for the 

characterization of compactly supported scaling functions which allow perfect reconstruction 

with the RRA. The first theorem demonstrates that any two polynomials which satisfy 

a dual dilation condition (3.5) must necessarily have their roots on the unit circle. The 

second theorem builds upon the first by explicitly characterizing the arrangement of the 

roots of such polynomials. These two theorems have some specific implications in regard to 

compactly supported RRA scaling functions. Since the scaling symbols Hp and Hq completely 

characterize the scaling functions, the requirement stated in Equation 3.2 will be used as the 

basis for the analysis. 
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Given a scaling function, <f>, with scaling filter Hp, orthonormality of the scaling function 

translates into the following condition on the scaling coefficients, hp 

£ hp{k)hp(k + pn) = 6nfi    n e Z (3.4a) 
k 

which, when written in the Fourier domain, becomes 

(Dp(\Hp\2))(e*) = 1    a.a £ e R (3.4b) 

The following definitions will be useful in subsequent lemmas and theorems. 

Definition 3.1. An R-set of z with respect to p, denoted Rp{z) is the set of the p-th roots 

of z. Writing z = ret9, 

Rp{z) = tfW+W}^. 

The term Ä-set will also be used to describe any set of complex numbers which share the 

same magnitude and have arguments uniformly spaced in R (modulo 2TT). ■ 

Define Az by 

A, = iW*P9)- 

With a slight abuse of notation, let 

A> = Rq{z^) 

Aq
z = R,(f). 

Define Bz = Az U Ap
z U A\. The set Bz can be given practical meaning by recognizing it as 

the collection of all p-th, g-th, and pq-th. roots of the complex number zpq. It is used in the 

following lemma. 
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Lemma 3.2. Given two polynomials P and Q which satisfy 

P(zq)Q(z) = P(z)Q(zp)    V2GC, (3.5) 

define f(z) = P(z)Q(zp) = P(sfl)Q(z). Define R C Z(f) by 

R={zeZ(f):\z\>l}. 

If R is non-empty, and a minimum root a is well-defined such that \z\ > \a\, for all z € R, 

then f(Ba) = {0}. 

Proof.   For notational convenience, define the polynomials P9 and Qp by 

Pq(z) = P(zq)    VzeC 

Q>(z) = Q(zp)    VzGC. 

Then / = PqQ = PQP. First of all, /(a) = 0 =► P(a)Q(ap) = 0. This impUes either 

P(a) = 0 or Q(ap) = 0. Consider the first possibility: 

P(a) = 0 =► Pq(rq(a)) = 0    leZg 

=» W(a)},«, C R. 

This implies a1^ is also a root of / which contradicts the assumption that a was the smallest 

root in R since 1 < |a1/,?| < |a|. Thus, Qp{ot) = 0 and by a similar argument using the other 

representation of /, Pq(a) = 0. 

With P(aq) = Q(ap) = 0, the following holds: 

P*(a) = 0 =► Pq{aeiMlq) = 0    VI € Z„ 

{aei2ir//«}l6z8 C A 
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Now, each root in this Ä-set of roots is also a root of Qp by the preceeding argument. Hence, 

pi{a^li) = o =*. QP(c*ei27r//«) = 0,     I G Zq. 

=» Qp(aei2nl/qei2*k/p) = 0,     leZq,ke Zp. 
»2ir(pI+oA:) v 

=► <7(<*e   »   ) = 0,    iezg,ke zp. 

>pq- 

l2irl. 

J>9 

=► Aa C R. 

=* /(Aa) = {0} 

The third and fourth above steps use the fact that p and q are relatively prime and an 

application of Lemma A.l. Continuing, 

P*(Aa) = {0} =* P(Al) = {0} 

=>A9
acR 

and 

Q*(Aa) = {0} =» Q(A£) = {0} 

"■a 

which implies Ba C R since Ba = AQUi4p
QU A«. This leads to f(Ba) = {0} 

■ 

Corollary 3.3. If R = {z G £(/) : |z| < 1} and R is non-empty with a as a maximum 

root, then f(Ba) = {0}. 

Proof.   By switching the inequalities, the previous proof holds. 
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Theorem 3.4. If two polynomials P and Q satisfy (3.5), and the polynomial f is defined 

as in Lemma 3.2., then Z(f) C T U {0}. 

Proof. If two polynomials P and Q satisfy (3.5), then P(z) = zkP(z) and Q(z) = zjQ(z) 

satisfy (3.5) as well for k, j € N such that 

k     p— 1 

j ~ Q ~ 1' 

This accounts for any roots at the origin. Hence, assume P and Q have non-zero constant 

terms. To show the roots of the individual polynomials P and Q lie on the unit circle, it 

is necessary and sufficient to show the roots of / lie on the unit circle. The approach is to 

assume there exists some finite number of roots outside the unit circle and show this leads 

to a contradiction. With slight modifications, the same approach is then used to contradict 

the existence of a finite set of non-zero roots inside the unit circle. 

Assume the set R as denned in Lemma 3.2. is non-empty. There are a finite number 

of roots in R since both P and Q (and hence /) are polynomials. Choose a € R to satisfy 

K \a\ < \z\    Vz e R. 

That is, choose a so that no other root in R has a smaller magnitude. 

The implication of Lemma 3.2. is that a necessarily exists as one of a set of pq roots 

which share a common magnitude and are equally spaced in phase by 2'jr/pq. Furthermore, 

the sets Aa, APa, and Aq
a are disjoint since they contain roots of different magnitudes (when 

|a| ^ 1). Figure 3.1 illustrates a possible set Ba with p = 3 and q = 2. 

Now choose a' to be a root with the smallest magnitude in R \ Ba. Such a root exists 

since it can be shown that Ba^ R as follows. 
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Figure 3.1    A Possible BQ for p = 3, q = 2, and a = 1.2 e^01) 

Existence of a'. 

Suppose the opposite. That is, suppose R = Ba. Choose ß e Aq
a arbitrarily. We have 

Q(ß) = 0 => P(ß)QHß) = 0 

so that either P(ß) - 0 or Qp(ß) = 0. First, P(ß) = 0 implies the existence of roots rf(ß) 

whose magnitudes are |o:|« (since \ß\ = |a|p). This is not a possible magnitude for Aa, A%, 

or Av
a so that P(ß) = 0 implies there exists another root of / which is not an element of Ba. 

The other alternative is that Qp(ß) = 0 which implies ß exists within a set of p roots 

phase-spaced by 2n/p. But the roots in Aq
a are phase-spaced by y which implies there are 

roots of / which have the same magnitude as those in A^ but with different phases. The 

result in either of these cases is that we contradict our original assumption which implies 

R T^ Ba. 

3-7 



Generation of Ba> 

We show that a' "generates" the sets Aa>, A9
a,, and Ap

a, in the same way as a. As before, 

we start by showing Pq{a') = Qp{pt') = 0. This is not as easy as before because we need 

to consider the possibility of P(a') = 0 or Q(a') = 0 as well. Recall we concluded P9(a) = 

QP(a) = 0 by showing that Q(a) = 0 or P(a) = 0 implies the existence of roots whose 

magnitudes were less than a which was a contradiction. In this case, we know there may 

exist roots whose magnitudes are less than a' since a' e R\Ba. These roots would be in 

B*. 

Suppose we have Q(a') = 0. Then, as before, we also have {rf (a')}iezp C R which are 

the roots of Qp. These roots have magnitudes less than |a'| which is an apparent contradiction 

unless we have {rf (a')}iezp C BQ. We need to show this is not possible either. 

First of all, since A, A9, and Ap are disjoint, we can consider them independently. 

We can immediately rule out the possibility that {rf (a')}i€zp = Aq since the sets have 

inconsistent phase-spacings (2ir/p versus 27r/g) and different cardinalities (p vs. q). 

So, consider first the possibility that {rf (a1)},eZp = Ap. Then we have P(rf(a')) = 0 

for I G Zp. Looking at the other side of the equation, it follows: 

P«(rf(a'))Q(r?(a')) = 0 

i 
for I e IP. But Q(rf (a1)) ^ 0 since that would imply roots of Qp with magnitude |o;'| P7

 < |o;'| 

and these roots are clearly not in Ba since they have different magnitudes. This contradicts 

the assumption that a' was chosen with the smallest magnitude in R \ B. 

Now consider the possibility that P9(rf (a1)) = 0. 

Pq(rf(a')) = 0 =► P*(rf (a'y2*^) = 0    leZp,keZq (3.6) 

=5>{\a'\pe   p   ep»}iezpqCR (3.7) 
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Notice we have pq roots with magnitude |Cü'|P. Some of these roots will not be in Ap since 

they have phase spacings of —. This also contradicts the assumption that a' was chosen 

with the smallest magnitude in R \ B. Hence, we conclude 

P«(r*(a'))Q(r?(a')) ^0    Z € Zp 

which implies 

P(rf(a')) ^ 0    I € Zp. 

The result is {rf(a')}iezp ¥" A?- We also have {rf(a')}iezp <jt A since that would imply that 

a' € Ap, a contradiction in the assumption of how it was chosen. 

The end result is that Q{a!) ^ 0 which forces Pq(a') = 0. Using a nearly identical 

argument (switching the roles of p and q) we also get Qp(a') = 0. The generation of Aai, 

Ap
a,, and Aq

a, directly follow from these two results. 

Comparing Ba and B'a. 

To show the number of roots "generated" by a, a', a",... increases without bound, consider 

the intersection between Ba and Ba<. There are three cases to consider. 

Case 1: |a| = |a'| 

Since a' is chosen from R\Ba, we can assume without loss of generality that 

a' = aei€ 

for some e £ (0, —).  There will be no intersection between A and A' since one set is an v   J pq/ 

e-phase shifted version of the other and c < ^. Furthermore: 

»2iri. 

Aa> = {a'e PI }i&zpq 

\ieZpq = {ae« «-*>}, 
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which implies 

Ap
a, = {aV<¥^>}/eZ9 

Al, = {a'e«2-?+«%eZp. 

A non-null intersection occurs between A% and Aq
a, only when qe = 27r/p or e = 2ir/(pq). 

This is a contradiction since e < 2ir/(pq). The same is true for the intersection between Ap
a 

and Ap
a,. Hence, for |a| = |a'|, Ba and Ba> are disjoint. 

Case 2: |a'| = |a|p or |a'| = \a\q 

Consider the case where |a|p = \o/\. There can be at most q intersections between A% and 

Aai since A% only has q elements and they are phase-consistent with elements in Aai.  In 

the other case, |a|9 = |a'|, there will be at most p intersections between Ap
a and Aa< for the 

same reasons. Consequently, Bai will contain either pq + p or pq + q roots distinct from Ba. 

Case 3: |a|p = |a'|9 

For this case, the intersection between Aq and Ap
a, can contain at most one element since 

the phase spacings of the two sets are not equal and, more importantly, the spacings are 

relatively prime. In other words, the only way for there to be more than one intersection 

would be for p and q to not be relatively prime. \AP\ = |AP,| and \A9\ = \A9
a,\ but the pairs 

of sets will be disjoint because of the initial phase difference between |a| = |a'|. The other 

possibility is that jo;| ^ \a'\. This immediately leads to the conclusion that Ba and Bai are 

disjoint. Notice that the case \a\q = |a'|p is not considered since, for p > q, it immediately 

implies |a'| < |a|. This violates the assumption that a has the smallest magnitude. 

Conclusion. 

With the assumption p> q, each set Ba',Ban, Bam,... contributes at least pq + q — 1 unique 

roots of /. Thus the total number of unique roots grows without bound. But, we know the 

number of roots is finite, hence the original assumption that there exists a nonempty set R 

containing roots of / which lie outside the unit circle must be false. 
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It is now easy to snow there are no roots inside the unit circle by choosing a to have 

the largest magnitude of any possible roots within the unit circle. The argument is nearly 

identical to the one above except that the the magnitude of sets Ba, Bai,Baii,... approaches 

zero instead of infinity as with the roots outside the unit circle. 

■ 
The previous theorem indicates that the scaling filters associated with scaling functions 

satisfying (3.1) must have all their zeros on the unit circle. The arrangement of the roots on 

the unit circle is addressed in the following theorem. 

Definition 3.5.   The modulated regularity function, Sp(-; 7) is defined for p € N and 7 G C 

by 

P n€Zp 

Lemma 3.6. /// = P9Q = PQP = SM(-;7), then 

P = SP(-n) 

Q = Sq(-,-r) 

7 € {J2*kl%zzd 

where d = gcd(p — 1, q — 1). 

Proof. Consider 5pg(-;7) and the arrangement of its roots as in Figure 3.2. The phase 

space between rows is 2ir/q and between columns, 27r/p. When the roots are partitioned 

according to PQP, there are q — 1 Äp-sets of roots, which account for the .first q — 1 rows 

in Figure 3.2. The remaining p — 1 roots (the last row) are phase spaced by 2%/p, which 

includes the phase spacing between the actual roots and the deleted root, which corresponds 

to 7. Hence, P = Sp(- ; 7). By a similar argument, Q = Sq(- ; 7). 
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q-1 1 

P-1     ::•-.:       : 

1        ••...• 

Figure 3.2   Roots of / Arranged on a Grid Showing Phase-Spacings 

We need to characterize the possible values of 7. We have 

which can be substituted into the expression for / to yield: 

{{z^y - i)((*7)g -1) = «*p7)g - m^y -1) 
(z*7-1)(*7-1) (^7-l)(«7-l) 

After expanding each side of the equation, multiplying to remove the denominator terms, 

and equating the coefficients of the powers of z, a dual condition arises, namely, 

rJP  ==  /y"   ^3  'V 

This implies 

7 € {e**^Vi n {^/(9-1)}ieZ,-1 

which leads to 

7 € {ei2^/d}iezd 

where d = gcd(p — 1, q — 1). 

3-12 



Theorem 3.7.  With f = PqQ = PQP as before, one (or both) of the following conditions 

must hold: 

3zeT:AzcZ(f), 

i.e., Z(f) contains an Rpq-set, or f can be written as 

M 

f{z) = n Spq(z; 7j)    7j € {2irk/d}keZd 

for some M G N with d = gcd(p - 1, g — 1). 

Proof.     Prom the previous theorem, Z(f) C T.  Furthermore, the number of roots of /, 

denoted |£(/)|, must satisfy 

\Z(f)\ = Np+pNq = Nq + qNp 

where Np and Nq are the degrees of P and Q, respectively. This implies the degrees of P 

and Q must satisfy 
NP _(p-l) 
NQ   (q-iy 

Consider the following rational function 

R^=wrW) V2£C (3-8) 

Since there are at most Np zeros in the above expression, this implies there are at least 

Np(q — 1) = Nq(p — 1) roots common between Pq and Qp. Define the multiset C by 

c = z(Pq) n z(Qp) 

where the term multiset is used to mean a set whose repeated elements are treated as distinct. 

Thus C consists of the roots which are in Z{Pq) and Z(QP) simultaneously, along with all 
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their multiplicities. Thus, 

\C\>Np(q-l) = Nq(p-l). 

We now consider two cases: \C\ > Np(q - 1) and \C\ = Np(q - 1). 

Case 1: \C\ > Np(q - 1) 

Suppose \C\ > Np(q — 1). The roots of P9 are arranged into Np Rq-sets. That is, each root 

of P "generates" an Rq-set of roots for Pq. Similarly, the roots of Qp can be arranged into 

Nq Rp-sets. 

There exists an i2p-set and an J?g-set of roots in C. To see this, define the set Z{Pq) = 

Z(Pq) \ C. In order to avoid having an .Rp-set of roots in C, Z(Pq) must contain at least 

one root from each of the Np Rq-sets in Z(Pq). This implies 

\Z{f)\ > Np 

which contradicts our assumption about the cardinality of C since 

\C\ + \Z(]*)\ = \Z(I»)\ = qNp 

must hold. That is, |£(P9)| > Np implies \C\ < (q - l)Np, a contradiction. Thus there 

must be an Rq-set of roots in C. By a nearly identical argument, it is easy to show there is 

a i2p-set of roots in C as well. 

The i?g-set of roots in C can be written as 

where u> represents the phase orientation of the set. Each root in the above set is also a 

member of Z(QP), which implies it is a member of some i?p-set. The union of the q i?p-sets 
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associated with the above set can be written as 

(J {(w + 2irl/q + 2irk/p) mod 27r}fceZp = {(w + 2Tr{qk+pl)/pq) mod 27r}/6Z„jfeezJ, 

= {(u + 2im/pq) mod 27r}n6zM 

which corresponds to an i2pg-set of roots. The last step is a consequence of Lemma A.l. 

Thus, if \C\ > Np(q - 1), there exists a Äpg-set of roots in Z{f). 

Case 2: \C\ = Np(q - 1) = Nq(p - 1) 

For this case, we assume C contains no i2p-set or ßg-set since by the argument of the previous 

section, we would be done. The only way for C to avoid having a i2p-set or 2?g-set is for the 

"completion" of each of the sets to exist in either Z(Pi) or Z(QP). Hence 

\Z{P^)\=NP 

\Z(&)\=Nq. 

Note that Z(P*) and Z(QP) have no intersection since otherwise this would imply 

another root in C. Furthermore, the following holds 

Z(P9) = Z(P) 

Zm = Z{Q)- 

To see this, choose z0 G Z(P). This implies z0 G Z(Pq) or z0 G Z(Q). But z0 G Z(Q) imphes 

a common root between P and Q which forces |£(.R)| < Np and consequently implies there 

is one more root common to Z(Pq) and Z(QP), which, for this case, forces \C\ > (q — 1)NP, 

a contradiction. 

Choosing z0 G Z(Pi) implies z0 £ Z(QP) so that z0 G Z(P) must hold.  A similar 

argument holds for Z(Q) and Z(QP). The end result is the "completion" of each of the Np 
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fig-sets of roots of Pq must be contained in Z(P). Conversely, the "completion" of each of 

the Nq fip-sets of roots of Qp must be contained in Z(Q). 

The focus of the proof at this point is to reconcile the two arrangements of roots implied 

by the left and right sides of PQP = QP9. The key observation is that the left side points 

to roots which are organized into Ng fip-sets and the right side implies Np Rq-sets of roots. 

Consider the sets Z(P9) and Z(QP) arranged as shown in Figure 3.2. On the left, each 

Z(Pq) Z(QP) 

7*2,1        r2)2 
7"3,1        r3,2 

rl,«-l Thi 
7-2,9-1 7-2,g 
7-3,9-1        7-3,5 

. rNp,i   rNpft   ...   7-^,9-1   rNp,q 

«1,1        Sl,2        «1,3 
«2,1        «2,2        S2,3 

SJV„1     SNqfl     SjV9,3 

Sl,p-1        Sl,p 
S2,p-1        S2,p 

SNq,p-l    SNqjP  ) 

Figure 3.3   Graphical Representation of Z{Pq) and Z(QP) 

row is an fig-set and on the right, each row is an Rp set of roots. Without loss of generality, 

assume first q — 1 columns on the left and the first p — 1 columns on the right form the 

intersection set C. Specifically, assume 

C = {rk,l}keKNv>l€Nq-i = {Si,j}i€nN.,jeNp-i \p »•=«« 

where for peN, the notation Np is used to mean Np = {1,2,... ,p}. On the left, assume 

the "completion" of each of thefig sets is represented in the last column and likewise for the 

Rp sets on the right. 

Define the invertible mapping M : NNq x Np_i —»■ NNp x Ng_i to be the index mapping 

between the two representations of C: 

sk,i = Vij «=* M(i,j) = (k,l). 
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It is an invertible mapping since there we assume unique indices and the cardinalities of the 

two representations of C are equal. 

Now consider the set {«iJ}JGNP_I • This is a partial Rp set so the phase of each element 

differs from the others by an integer multiple of 2ir/p. We say these roots are phase-spacedby 

2ir/p, which is a term used loosely previously but made more rigorous here. Since these roots 

can be found among the Tk,i which are organized as Np partial Rg sets, the next observation 

is key. The roots on the left corresponding to the {si,j}j6Np_i must each be located in 

a different row since two roots cannot be simultaneously phase-spaced by 2ir/q and 2ir/p 

unless they are equal. Rigorously, with (ki,li) = M(i,ji) and (A^,^) = M(i, J2) , 

k1 = k2=^ ji = J2- 

Since M is invertible, the converse is also true; any two distinct roots on the left in the same 

row must map to different rows on the right. 

Without loss of generality, we can arrange the roots on the left so that the p — 1 rows 

into which the {si,j}jeNp_i map are the first p — 1 rows. Furthermore, we can assume 

*U = »j,i   JeNp-i. 

Now, the first partial row on the left {?*i,j}j€N,_i maps onto different rows on the right 

by the same reasoning as above. As above, we can assume these rows are the first q—1. That 

is, we can assign rxj = s^i which results in the first row and column on the left identically 

mapping to the the first column and row, respectively, on the right, and vice-versa. 

At this point, we want to show 

{rfc,l}*eNp_i,JeNj-i = {sij}ieN,-i,i€Np-i 
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To do this, we show subset relationships in both directions. Choose rk>i arbitrarily. We want 

to show there exists a (j, n) € Ng_i x Np_i such that rfc)/ = s^n. To do this we use the 

following facts. 

The ifc-th row on the left is an i?g-set of roots which means the phase spacing between 

Tk,i and Tk,i is 2ir/q. Rigorously, there exists a n; G Ng such that 

rk>l = ei2™'/«rM. 

Furthermore, since the first column is phase-spaced by 2n/p, there exist nk G Np such that 

Substituting siti = 7*1,1 and combining the previous two expressions, we get 

rk>l = e0**»/^0**1/*«!,!. 

Letting Sjti = e*2irfcl/9Si,i and 8jftl = ei2*k*/pSjti, we need to ensure two conditions. We need 

to have j G Ng_i and n € Np_i. Clearly j ^q since the set {si,i}ieN, would form an i?g-set 

of roots in C which is a contradiction as mentioned before. That is, j = q would imply s9)i 

is the "completion" of an Äg-set of roots in C since we assumed the set {si.ijigN,.! C C was 

phase-spaced by 2ir/q. 

Showing n €. Np_i is easier once we know j G N,_i. Since rk,i and Sjti are phase-spaced 

by 27r/p, rk,i exists in row j on the right side of Figure 3.2. We know n € Np_i since n—p 

implies rk,i = SjiP which is a contradiction since rkj € C and SjtP £ C. 

Thus we have shown that given (k, I) 6 Np_i xNrl there exists a (j, n) G Ng_i xNp_ifor 

every (k, I) there exists (j, n) such that rkj = SjiTl. The reasoning can be applied from right 

to left to show the converse is true as well. Thus we have shown 

{rfc,j}A:eNp_i,zeN,_i = {sM}ieN,-i,jeNp_i- 
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The union of the first p — 1 rows on the left of Figure 3.2 with the last column on the 

right is a set of pq — 1 roots which have a phase-spacing of 2ir/pq due to the fact that p and q 

are relatively prime and an application of Lemma A.l. This set of roots correspond to those 

of modulated regularity function S,
pg(-,7), and form a self-consistent set with respect to the 

structure imposed by the dual dilation equation. This is to say that Spq(-, 7) can be factored 

from the polynomial / = QPP = PqQ so that Sp(-, 7) divides P and Sq(-, 7) divides Q. We 

can continue factoring Spq(',j) from / as above to show that / can only be factored as a 

product of some finite number, M, of these modulated regularity functions which is what 

we set out to prove. 

■ 
Lemma 3.6. then indicates the following forms for P and Q 

p(z)= n£i-SW*;7i)l        cr9 bMX )     li e {2irk d}keZd. 
Q(z)= n£iS«(*;7i) J 

where d = gcd(p — 1, q — 1). 

3.3   Rational Resolution Scaling Functions 

Before applying the two theorems of the previous section to the discussion of RRA 

scaling functions, it is necessary to discuss duality in the context of approximation spaces. 

If {(j>oj}jez is a Riesz basis for the Hilbert space Vo, then it has a unique dual basis {<ßo,j}j€Z 

which is also a Riesz basis for Vo and satisfies 

(H--j),<K--k)) = 6hd. 

The dual scaling function 0 can be derived from this requirement via the following analysis. 

Writing the inner product in terms of the Fourier transform and expanding it in terms of its 
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integral definition yields 

1 r2*" 5. —  .,/■    x 
= T- E /    *fc + 27rZ)0(e + arOe**-'^ 

27T yo „, 

where the interchange of summation and integration above is justified by an application of 

the Levi theorem for series of Lebesgue-integrable functions[3]§10.8. If the final expression 

above is considered as an inverse Fourier transform, we have 

2 $(£ + 27rZ)<K£ + 2TTZ) = 1    a.e. £ e R 
Jez 

from which an expression for ^ can be written as 

$(£) = jr^S . (3.9) 

The denominator in the above is known as the Euler-Frobenius function[ll] generated by 0, 

denoted by E<f,. Expressing 0 in terms of (3.1b) and substituting into E$ yields 

^(e*) = Elfe + 27rO|2 

i 

= ^El^(^+2,r0/p)|2|^((e + 27rO/p)|2 

= " E |flr,(e«+ta^')|a E l#(K + 2ir*)/p + 27T0I2. 
Pfc=o i 

This expression will be useful in the following lemmas and theorems. 
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Lemma 3.8. If <j> simultaneously satisfies dilation equations for p and q with scaling fil- 

ters Hp and Hq, then <f> satisfies dilation equations for dilation factor pkql for k, I G Z+. 

Furthermore, the corresponding scaling filter is given by 

Hpkql(e«)=p-Wq-l/2 II II Hp{^)Hq{e^) 
n=0 m=0 

Proof.   Prom the two scale relationships we have 

m) = p-1/2Hp(e*)fa) 

and similarly for the g-dilation. By substituting this equation into itself, we can write 

4>{pk0^p-k/2UHp(eipn()kO- 
71=0 

Consequently, we have 

fokql0=p-k/2I[Hp(ei*nt)M0 
n=0 

n=0 m=0 

which is what we set out to prove. 

Lemma 3.9. If Hp be the scaling symbol (filter) associated with the scaling function <j> of 

a p-dilation MRA, then Z{HP) cannot contain an lip-set of roots. That is, there exists no 

a G [0, 2TT) such that {e<a+^k^}kadp C Z{Hp). 

Proof.   Assume such a set of roots exists. Then 
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= - E \H,{#W>I*)\% E \m&+2^)/P+2x012 

P k=o lez 

which vanishes when evaluated at f = a. Since we assumed <j) was a scaling function 

associated with an MRA, it forms a Riesz basis for the approximation space and thus satisfies 

the Riesz condition. That is, there exist positive constants A and B such that the following 

condition [12] holds 

A < E \b(Z + 2irk)\2 ^ ß'    ae- £ G R 

fcez 

Now, since hp € Zi, (see Equation 2.8 and following discussion) its Fourier transform, Hp, 

is continuous. Thus \Hp(e
i^+2irk^p)\2 is continuous and the Euler-Frobenius polynomial will 

go to zero in a continuous fashion forcing a violation of the lower Riesz bound A. This 

contradicts the assumption that <f> formed a Riesz basis for approximation space of the 

MRA. Hence, no such i2p-set can exist. 

■ 
The implication of this theorem and Theorem 3.7. is that while there exists many 

classes of polynomials which satisfy (3.5), the only ones which need further consideration 

are the ones associated with regularity factors: 

HP(Z)   =apnr=1^;7j) {/M/t} (3il0) 

Hq(z)   =aqUT=iSq(z'nJ) 

Before characterizing the allowable values of 7,, the following lemma will be useful. 

Lemma 3.10. If Hp — y/pS™ corresponds to an orthonormal scaling function, then m = l. 

Proof. For m = 1, we have the scaling filter for the well-known Haar scaling function 

which is orthonormal. We assume m > 1 and show the corresponding scaling filter violates 

a validity condition which is necessary for an orthonormal scaling function. 
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Since \SP\2 is positive and bounded above by 1, we have 

|Sp
m(e*)|2 < |Sp(e*)|2    ee[0,27r) 

with equality only at £ = 0. Hence 

hi!" W^P«=£ JC"*^1'* <hC^s'(S)^=1 Wm>1' 
which violates the requirement that a valid scaling filter have unit energy. It is closely related 

to the requirement that \\hp\\i2 = 1. Hence, m = 1 is the only allowable value. 

■ 
The following theorem characterizes the allowable values of 7,. and proves that any 

scaling filter of the form given in Equation 3.10 and corresponding to an orthonormal scaling 

function is the single regularity function Sp(-; 1) or simply, Sp. As background to this result, 

recall the Fourier-domain relationship btween the scaling filter Hp and the scaling function 

m = fi Hp(e^-k) (3.11) 

where the Hp have been renormalized so that Hp{\) = 1 instead of Hp(l) = p1?2 as was 

originally defined. 

Theorem 3.11. // Hp(z) = ap J[f=i Sp(z; jj) with jj € {e?2*l/d}iezd corresponds to an or- 

thonormal scaling function, then m = 1, 71 = 1, and ap = pll2. More precisely, Hp = p1'2Sp. 

Proof.    Assume Hp has <Sp(-;7j) as a factor with 7,- ^ 1. This factor contributes zeroes to 

<f> via the expansion given in (3.11) above. That is, the zeros of the product 

Y[Sp(e«»-k-nj) 
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are also zeroes of $. The approach of this part of the proof is to demonstrate that the 

zeroes contributed by this infinite product are uniformly spaced by 2ir and thus violate the 

orthonormality condition for (j>. 

To see this, first consider the zeros contributed by the k = 1 term of the infinite 

product. These zeros are given by f such that 

£/p - lit j/d = 2nl/p   l€Z,l mod p ^ 0. 

Defining u as the normalized frequency £ = 27IXJ and solving the equation above in terms of 

w, we have 

u = I + pj/d   leZ,l mod p ^ 0. 

In terms of u, the unity points (denned to the points for which Sp = 1) for A; = 1 are 

u   =1 + pj/d I GZ,Imodp = 0, 

= pi + pj/d lez, 

= pl + nj + j/d      I € Z. 

The last step above highlights the relationship between p and d and is crucial in this analysis. 

Recall that d= (p— l,q— 1) which implies that d divides p — 1. Define n by nd = p — 1 so 

that 

pj/d=(p-l)j/d + j/d 

= nj + j/d. 

The importance of this observation will become apparent. 

The zeros of the infinite product associated with an arbitrary k are given by 

u   =pk~1l + pkj/d l£Z,lmodp^0, 

= pk~l + nj(pfc_1 + p*-2 + \-p) + nj +j/d      leZ,l mod p ^ 0. 
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Notice that the zeros for an arbitrary level A; are a subset of the k = 1 unity points. Further- 

more, the zeros at one value of k are disjoint from those of another value. This can be seen 

by observing that the zeros at level k + 1 are determined by multiplying the zeros at level 

k by p which violates the restriction that the iteration index not be a multiple of p. The 

result is that, in the limit, all the k = 1 unity points are cancelled by the zeros associated 

with subsequent values of k. Thus, (j>(2Tr(j/d +1)) = 0 identically for I € Z. 

For orthonormality, recall the requirement on 0: 

J3 \$(£ + 2irk)\2 = 1   a.e.f € K. 
fcez 

By choosing f = 2irj/d, we have a violation which implies <f> is not an orthonormal scaling 

function. Thus, Hp cannot contain any factor Sp(- ; 7j) when jj ^ 1. 

With this intermediate result, we are left to consider Hp of the form Hp = S™. Ac- 

cording to Lemma 3.10., we must have m = 1. The value ap = p1/2 follows from the 

required normalization of Hp. Thus, scaling niters of the form given in Equation 3.10 which 

correspond to orthonormal scaling functions can be written as 

Hp = px'2Sp, 

Hq = ql'2Sq. 

Theorem 3.11. provides an interesting insight into spline-based scaling functions. With- 

out Lemma 3.10., the theorem proves that any scaling filter containing a modulated regularity 

factor Sp('\'i) with 7^ 1 cannot be orthonormal. Furthermore, it cannot be transformed 

into an orthonormal scaling function via the "orthonormalization" trick since there exist 

points £ for which 

£|«fe + 27rA;)|2 = 0. 
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Recall the left side of the expression above is required in the denominator of the trick which 

implies division by zero. 

3.4    Conclusion 

The previous theorem proves that the only compactly supported scaling function as- 

sociated with a perfect-reconstruction RRA is the well-known characteristic function or the 

Haar scaling function. Furthermore, the required form of the scaling filters demonstrates the 

only scaling functions which yield perfect reconstruction are those which are spline-based. 

That is, they are scaling functions which are constructed from successive convolutions of the 

regularity function Sp. 
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IV.   Spline-Based Wavelets 

4.1 Introduction and Motivation 

The results of the last chapter indicate that the only useful RRA scaling functions are 

those which are based on the ß-splines. According to the scheme proposed in Chapter II, 

wavelets which complement these types of scaling functions are necessary. These spline-based 

wavelets are the topic of this chapter. 

There are two major portions of this chapter. First, some initial analysis is performed 

to quantify the requirements of spline-based wavelets. The approach is to define an operator 

which represents the projection of ip € V_i onto Vo and show the nullspace of this operator 

and the detail space Wo are isomorphic. The approach is to start with compactly supported 

functions which are orthogonal to the approximation space, then show the integer shifts 

of these functions form a basis for the detail space and are, therefore, semi-orthonormal 

wavelets. Furthermore, they can be "orthonormalized" to form an orthogonal basis for the 

detail space. 

Then, the theory above is put into practice via an algorithmic description of the 

technique to construct the .B-spline wavelets. The description will include such issues as 

symmetry/anti-symmetry, redundancy, orthogonalization, and numerical accuracy. 

4.2 Analysis and Problem Description 

4.2.1 Conditions for Semi-orthogonal Wavelets. Suppose we have a p-dilation MRA 

with the (non-orthonormal) .B-spline scaling function <f> = Nm for some m G N. The integer 

translations of (j> form a basis for an approximation space Vo- The orthogonal complement 

of Vo in V-i is the detail space, WQ, which is spanned by p — 1 wavelets. 
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Definition 4.1. In the context of an MRA, a semi-orthogonal wavelet ip € V-i is a function 

which satisfies the following: 

(<f>j,k,4>j,m) = 0    j,k,meZ 

0>j,k,tpi,m) = 0    j^l, j,k,l,meZ 

which is to say that i/f is orthogonal to the corresponding approximation space and self- 

orthogonal across dilation levels, but generally not self-orthogonal with respect to its own 

integer translations within the same dilation level. ■ 

Semi-orthogonal wavelets are important in that they can form Riesz bases for detail 

spaces in the same way (j> = iVm forms a basis for the approximation space. In this sense, 

<f> can generally be considered as a semi-orthogonal scaling function. Semi-orthogonal ba- 

sis functions are usually constructed with compact support; their associated symbols are 

polynomials which facilitates their manipulation. 

We want to find semi-orthonormal wavelets, iß, which satisfy 

(<j>{- - n), iß) = l°° 4>(t - n)ip(t)dt = 0,     Vn G Z. (4.1) 
J—00 

Expressing the scaling function and the wavelet in terms of their respective two-scale equa- 

tions 

<j)(t) = J] hp(n)(f>{pt - n) 
n 

n 

so that the orthogonality expressed in (4.1) can be written as: 

(</>(• - n), V) = E E K(l)9p(k) r <t>(jpt -pn- l)<i>(pt - k)dt 
i    k J-°° 

I roo 
= "EEhP(l)gP(k) /    <Mjt-pn-l + k)<t>(t)dt 

Pik J-°° 
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1 rm 
= - E E hpV)9p(k) /   Nm(t - pn - l + k)Nm(t)dt 
Pik Jo 

= " E E MOft»(*0 /   Nm(m + pn +1 - k - t)Nm(t)dt 
Pik Jo 

= - E E hp(
l)9p(k)N2m(m + pn + l-k) 

P   l     k 
= 0    n € Z, 

where the following identities have been used: Nm(t) = Nm(m — t), and 7Vm * Nm = tym 

where * denotes continuous convolution. We can write this previous expression in matrix 

form: 

Ag = 0 

where 

[A]n,fc = - E hP(
l)N2m(m + pn + l-k) 

P  i 
and [g]fc = 9p(k)-  It is clear that any solution, g, must lie in the nullspace of A.  If we 

are seeking solutions which are compactly supported, the problem can be reduced to finding 

nullspace vectors of a truncated version of A; the columns of A corresponding to the zero 

elements of any solution need not be considered.  Furthermore, truncating columns allows 

us to truncate rows as well since A is banded in the sense that each row is finite and is a 

p-shifted version of a single fundamental row. Thus, there are only a finite number of rows 

with non-zero elements in the column-truncated A.  The desired support of the nullspace 

vector will determine the truncation of A. Hence, some criteria must be applied to determine 

the support of possible solutions. 

There is a great deal of structure to A.   In particular, the rows of A are p-shifted 

versions of the fundamental row 

a* = [A]o,j = - E hp{k)N2rn{m + l-k). 
P  k 
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This row is necessarily compactly supported since both hp and N2m are compactly supported. 

Let A' denote the truncated version of A which contains the fundamental row (plus addi- 

tional columns if necessary to make the matrix rank deficient). This definition effectively 

truncates the columns of A for which the n = 0 row vanishes. 

The reason for this choice of truncation is simple. If A' contains a complete row, 

then any vector in jV(A') will also be in .A/"(A) (with appropriate zero padding). More 

importantly, any p-shift of the vector will be in Jsf (A) as well. Considering any A' with 

fewer columns will not necessarily preserve this property.1 In general the size of A will 

depend upon the dilation factor p and regularity factor m. The lengths of hp and i\r2m are 

m(p -1) +1 and 2ra -1, respectively, which implies the length of a is L = mp + m -1. The 

number of rows can be calculated by 

rows = 1 + 2 
L-\ 

V 

However, in the case where p divides L - 1 evenly, the number of rows can be reduced 

by 2 since this corresponds to the case where the top and bottom rows are all zero exept 

for the first and last element, respectively. Eliminating these rows in this case does not 

change the nullspace of the matrix since it simply forces the first and last elements of any 

nullspace vector to be zero. Consequently, the first and last colums of the matrix can also 

be eliminated. This will be more fully explained in the example which follows. 

Then end result is that A' will have more rows than columns, which is as expected 

since we assumed a nontrivial nullspace. It would be ideal to have dim M (A') = p - 1 so 

that there are as many nullspace vectors as there are wavelets. This is generally not the 

case. In fact we generally find dimjV (A') > p - 1 so that there are more nullspace vectors 

than desired wavelets. This will be addressed in the next section. This section is concluded 

with two simple examples. 

1The case where p = 2 as in Example 4.2. is a special case. Including an entire fundamental row in the 
formulation of A' precludes any nontrival nullspace vectors since the matix is full rank for all values of m. 
This is handled by shifting the support of the desired solutions by 1. 
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A' = 

Example 4.2.   Consider the case where m — 2 and p = 2.   This example is consistent 

with the derivation above.  We have hp = {1,2,1}, N2m = {0,1,4,1,0}, and hp * N2m = 

0,1,6,10,1,0. Then for gp supported on {0,1,..., 3m - 2} (as given in Chui[ll]), the system 

matrix A' is given by: 
r 6    1    0    0    0 

6   10   6    1    0 

0    1    6   10   6 

0    0    0    16 

which corresponds to k € {0,1,..., 4} and n € {0,1,2,3}. The range of n is determined 

explicitly by the range of I. Also, the entries have been normalized so they are all integer 

values. This can always be accomplished since both hp and N2m are spline-based. 

We want to solve the system A'g = 0. As noted before, g must be in the null space of 

A'. The system is rank-deficient so there is a non-trivial nullspace. Calculating the spanning 

vector in this nullspace leads to: 

T 
q = 1   -6   10   -6   1 

which agrees exactly with Chui's coefficients for the minimally supported semi-orthonormal 

wavelets corresponding to the B-spline JVjjfll]. • 

Example 4.3. Now consider the case where m = 2 (linear splines) and p = 3. The two-scale 

symbol Hp can be calculated as Hp = (pSp)
m, where S is the regularity symbol defined and 

used previously. Assume that we are looking for semi-orthonormal wavelets with supports 

in [0,m] which implies A; € {0,1,...,4} and n € {-1,0,1}. With hp = {1,2,3,2,1}, 

N2m = {0,1,4,1,0}, and hp * N2m = {0,1,6,12,16,12,6,1,0}, the system matrix A' is given 

by: 

A' = 

12 6 1 0 0 

6 12 16 12 6 

0     0     1     6   12 
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from which we can calculate a null space spanned by two vectors: 

(g(1))T = 

and 

2-56-52 

(g(2))T = 1-202 

The implementation details of this example are provided in Appendix D. ■ 

4-2.2 Completeness. The question which must be answered in light of the con- 

struction technique outlined above is how the nullspace vectors of A' and the detail space, 

Wo, are related. Specifically, it would be desirable to show the nullspace vectors correspond 

to semi-orthogonal wavelets which span the detail space of the p-dilation MRA. 

Lemma 4.4. Let the approximation space VQ be defined by the scaling function <f> = Nm for 

some m € N. As usual, let the detail space Wo be the orthogonal complement ofVo in V-\. 

Let A be defined as above. Then M (A) and WQ are isomorphic. 

Proof. Consider the transformation Q : V-i —* I2 which "extracts" approximation coeffi- 

cients. That is, for any / € V_i, we can express / by: 

/ = £ ckNm(p • -k), 
kez 

where c € h- Define Q by Q/ = c. Since the appoximation coefficients uniquely define the 

functions, Q is invertible: 

Q-1c=y£c(k)Nm(p--k) = f. 
fcez 

and both Q and Q-1 are linear. To show Q is an isomorphism between WQ and M (A), it is 

sufficient to show Q(WQ) = A/"(A) which implies Q is one-to-one and onto. 
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To show Q is one-to-one, it is sufficient (and necessary) to show A/"(Q) = {0}. This 

holds since 

Q/ = c = 0 =► ^c(k)Nm(p- -k) = / = 0. 
fcez 

To show "onto", it is sufficient to show that Q_1 is one-to-one, or that jV(Q *) = {0}. This 

also holds since 

Q-1C = / = 0 =* £ c(k)Nm(P • -*0 = 0 
kez 

The last implication is a consequence of the linear independence of the translates of 7Vm. 

Thus, Q is an invertible, linear, one-to-one and onto transformation between M (A) and W0 

which implies these spaces are isomorphic. 

■ 
As was discussed earlier, one way to describe the structure of the infinite matrix A is given in 

Figure 4.1. The matrix A' is repeated along the main diagonal. We would like to show that 

A = 

A  > 
A 

V 

Figure 4.1    Matrix Structure of operator A 

the nullspace of the matrix A', discussed earlier, is related to the nullspace of the operator A 

by showing that all integer translations of these (finite) nullspace vectors span the nullspace 

of A. Formally, we want to show: 
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where 

Gi = span{&(- - pk)}keZ 

and gi is a nullspace vector of A'. Note there is a slight abuse of notation here in that the 

nullspace vectors of A' are elements of RL, yet they are treated as if they are in 1%. The 

inconsistency can be overlooked with the assumption that & vanishes outside this region of 

interest or that we can append and prepend zeros to the various vectors without changing 

the nature of the problem. Here, we use L to denote the the length of the nullspace vector; 

it is also the number of columns in A'. 

Definition 4.5. The truncated matrix A^^ is denned to be the columnwise truncation 

of A to include rows corresponding to n G {—k, —k + 1,..., 0,..., k — 1, k}. The non-zero 

portion of A^ contains 2k + 1 cascaded and overlapping copies of the fundamental matrix 

A' (see Figure 4.1). ■ 

Lemma 4.6.  The sequence {A(fc)} converges strongly (pointwise) to A: 

lim||(A-A(fc>)(:r)||,2 = 0    Vrr € l2. 
k—*oo 

Proof. Fix x arbitrarily in fo. Let M* = {1 — m — pk,..., L — m+pk} be the set of indices 

corresponding to the non-zero entries in A^k\ Choose an e > 0. We need to find a K E N 

such that 

||(A-A(fc>)(x)||2<e    Mk>K 

Let y = Ax. This represents the discrete convolution of x with the fundamental row a, 

followed by a p-downsample. Since o has compact support and is bounded (by 1), then 

y e h- Furthermore, 

0   \n\ < k 

((A - A<*>)ar)(n) = \ e(*)(n)   jfc < |n| < L^J 

y(n)   otherwise 
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where 

e(fc)(n)= E a(l-pn)x(l). 

Since y G h, there exists a K\ such that 

E lv(»)l2<«/2. 
|n|>üTi 

But we need to contend with the "error" terms, e^k\ Define the finite-range max operator 

ML : Z2 -► l2 by 

{MLXMU) = max{a;(n + 7')}. 

Since the fundamental row a is bounded by 1 and has finite support, L, the following holds 

for n > 0 

|e«(n)| = 
L—m+pn 

E       a(l — pn)x(l) 
l=L—m+l+pk 

L—m+pn 

< £       a(l - pn)\x(l)\ 
l=L—m+l+pk 

L—m+pn 

<    E    WO I 
l=L—m+l+pk 

< L\(MLx)(L - m + 1 +pk)\ 

and for n < 0 

|e«(n)| = 
—m—pk 

E     a{l — pn)x(l) 
l=l—m+pn 

—m—pk 

< E     o(/-im)|a;(0| 
1=l—m+pn 

—m—pk 

<   E   l*(OI 
J=l—m+pn 

< L\(MLx)(-m - pk - L)\. 
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Since MLx € h (see Lemma A.2), there exist K% such that 

£   |e(*)(n)|2<6/2. 
\n\>K2 

Choosing K = max(Ki,K2), 

£  |eW(n)l2 + |y(n)|a< 
\n\>K 

||(A-AW)o;||2<€ 

which is sufficient to satisfy the hypothesis of the lemma. 

■ 
Remark. We do not have convergence in the uniform topology since it is always 

possible to choose an xk e h such that \\xk\\ = 1 and xk(l) = 0 for I € Mk. Hence, 

(A - A™)xk = A(xk). 

The ultimate goal is to show the nullspace of the infinite matrix operator A is spanned 

by the p-translates of the nullspace vectors of A(0) = A'. Let Q be a set of vectors which 

span the nullspace of A^ given by 

Q = {<u}jU 

so that N (A<°>) = span(Q). 

Lemma 4.7. For all k € Z+, the nullspace of A^ is spanned by the p-translates of the 

nullspace vectors of A^. 

Proof.   This proof is done by induction. First, note that the qt span A/"(A(0)) by definition. 

Now, assume 

JS/XA**-1)) = spanfoC- - pn)}^ 

for \n\ < k — 1. We want to show the M (A^kn also spanned by the $ as well. 
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Fix q arbitrarily in the nullspace of A^k\ The first L columns are identical to those in 

A(°) SO the first L elements of q can be represented as some element in the nullspace of A^°\ 

say q_ (• +pk). Likewise, the last L elements of q, taken as a vector, is a nullspace vector of 

A<°\ szyq$\--pk). 

Now both q_ (• + pk) and g+ (• — pk) are nullspace vectors of A^ and can be chosen 

so that the first and last p elements of q are zero so that 

q = q- q^\. + pk) - q<?\> - pk) € M(A™). 

But the first and last p elements of q are zero, which implies q E N'(A^k~1^). Thus we 

can write 

9 = E  E  <**-%(•-pn) 
t=l n=l-k 

or substituting the definition of q: 

9 = E  E  ofl-%(--pn)+^(--pk) + ^('+pk). 
t=l n=l-Jk 

Since q was chosen arbitrarily, the previous analysis must hold for all such q which gives us 

the desired result for the nullspace of A^-k\ Since it is clear the nullspace of A^0) is spanned 

by the ft, the induction on k is complete and so is the proof. 

Theorem 4.8.  With A and A^ defined above: 

JV(A)=  U jV(AW). 
fc€Z+ 

Proof.     Let {ft}-^ be a basis for jV (A(D)
). Fix q G AT (A) D l2 arbitrarily. We want to 

show there exists a sequence {q^}, such that qW € AT (A^kn which converges to q. Define 

4-11 



qw by 

' q(l)   I € Mk 
1W(l) = < 

0       otherwise. 

Since A^q^ = 0, we can write qW as some linear combination of the shifted nullspace 

vectors of A^ as a result of the previous lemma. Now, since 

lim g<*> = q, 
k—*oo 

if we choose an e arbitrarily small, there exists a K 6 N such that 

JV      k 

since 96/2- This implies 

JV(A) C U JV/*(A<*>). 
fc>0 

We also have subset inclusion in the other direction if A is a continuous operator[30]. It is 

sufficient to show A is linear and bounded. Linearity is a direct consequence of the definition 

of the operator. For boundedness, observe that Ax is a discrete convolution of x with the 

fundamental row a, which is compactly supported and thus bounded. Thus 

(AaO(n) = 5>(Oa;(/+]m) 
1 

which implies via the triangle inequality 

L—m 

\\Ax\\ <   £  a(l)\\x\\ 
l=l-m 

< L\\x\\ 
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which satisfies the boundedness requirement. Hence, A is a continuous operator and so the 

subset inclusion in the other direction can be shown: 

A( Urn qW) = lim Aqw 

k-*oo fc->oo 

= Urn (0) 
k—»oo 

= 0. 

Since we have the isomorphism between Wo and JV(A), this theorem prescribes a 

technique for finding wavelets which span the detail space W0> and by dilation, all the Wk 

for k e Z. In fact, the problem of finding the wavelets is reduced to a numeric calculation 

of the null space of an integer-valued matrix A'. In [25], Lian proves the completeness of 

such a technique for a dilation factor p = 3 by constructing a system matrix which is non- 

singular. The technique relies on being able to symbolically calculate the determinant of a 

3x3 matrix, which becomes nearly impossible for larger dilation factors. This result proves 

completeness without the cumbersome calculations. 

There are many computer codes to calculate a set of nullspace vectors of finite matrics. 

The result is usually an orthogonal set of unit-norm vectors whose linear combinations span 

the nullspace. While this is useful in practice, this approach generally sacrifices symmetry 

or anti-symmetry in the wavelets, which corresponds to linear phase in the corresponding 

detail filters. 

However, symmetric and anti-symmetric wavelet vectors can be constructed as follows. 

Since the fundamental row used to construct A' is symmetric, the reversed or "flipped" ver- 

sion of any nullspace vector <& is also in the nullspace. Consequently, the sum and difference 

are symmetric and anti-symmetric nullspace vectors. This new set of nullspace vectors are 

not necessarily linearly independent though. 
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There are only p — 1 wavelets whose integer translations span the detail space. In 

general, the nullspace of A' has a dimensionality greater than p — 1 so that the wavelets 

corresponding to these nullspace vectors overspecify the detail space. To form an orthonormal 

basis for W0, a technique such as Gramm-Schmidt can be used to orthogonalize the p - 1 

wavelets with respect to each other and eliminate the redundant nullspace vectors. 

4.2.3 Construction of Orthogonal Wavelets. In Example 4.3., two semi-orthogonal 

wavelets were calculated. These two wavelets are not mutually orthogonal and so the sub- 

detail spaces they span, respectively, are not orthogonal to one another, although they 

collectively span the entire detail space WQ. An MRA or RRA analysis using these two 

wavelets would lead to two sets of detail coefficients which are correlated. This can be a 

problem in certain applications where the desired representation of the signal needs to be 

as efficient as possible. Furthermore, correlated signals during analysis imply a need for an 

implicit decorrelation during synthesis, should synthesis be necessary for the application. In 

order to decorrelate the two wavelets of the previous example, a minimum-norm approach 

can be taken. In implementation it is similar to the Gramm-Schmitt procedure. 

For the sake of illustration, assume a dilation factor of p = 3. Suppose we start with 

two semi-orthogonal wavelets ipi and fa which are orthogonal to the corresponding scaling 

function <j> and orthogonal to themselves across dilation levels. We want to fix one wavelet, 

say ipi, and calculate another wavelet ip'2 which is orthogonal to it. 

We want to define ij)2 by 

# = fc " fa ■ (4-2) 

where fa = £fc ak^i,k and 

a = arg min H^-/a||2- 

This effectively describes the projection of ^2 onto the space spanned by the integer translates 

of V>i- We then have ip2 -*- V'lO — ^) f°r all fc G Z. This last statement is a consequence 

of working within a Hilbert space [26]. Notice there is a non-standard use of notation. The 
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subscript denotes the particular wavelet and not the dilation level as used previously.   A 

second subscript is used to denote an integer translation. 

For a particular example, let m = 2 (corresponding to the linear splines, functions 

which are piecewise linear with knots at the integers) and let the dilation factor p = 3. 

The two semi-orthonormal wavelets are shown in Figure 4.2 below. They are the same ones 

calculated by Lian in [25].   The values of these wavelets are normalized versions of thos 
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Figure 4.2   Linear Spline Semiorthonormal Wavelets for p = 3 

lated in Example 4.3. Details on their calculation are contained in Appendix D. 

The minimization function is 

k 

= (^2 ~ 53 Otklpljk, ^2-51 aj^i,i) 

= (fa, ifo) + (53Oikipi>k, 53Oiiipi,i) - 2{ip2,53akipi,k) 
k                      I                                       k 
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where the last step uses the fact that the wavelets are real-valued.  The minimum of the 

function will occur at the point were the gradient vanishes. Define 

1     k l k 

We want to solve for a such that 

The gradient of Ja is given by 

dJ(a) 
dat        k 

= Eaifcil,i> ~ <^i^l,*>- 

The minimizer of Ja satisfies 

where 

and 

Ca = b 

[C]ilfc = (^i,jfc,'0i,i> 

So, to find this minimizer, we need to find an inverse to the matrix C (if possible) so that 

ttmin = C-1b. 

There is a great deal of structure to the matrix C. Specifically, since we are dealing 

with -01 which is compactly supported, the elements of C will be non-zero only in a localized 

region about the main diagonal. Furthermore, C will be a symmetric Toeplitz matrix since 

one row will be a shifted version of some fundamental row, similar to the matrix A discussed 

previously. Thus, the operation of C on any vector is equivalent to a discrete convolution 
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of the fundamental row and the vector followed by downsampling in some cases. Thus the 

problem can be formulated as an inverse filter problem. 

Let c be the fundamental column of C defined by 

[c]fc = [C]fcto = (^i,o,^i,k). 

Then 

[Ca]k = (c * a){k) 

where * denotes discrete convolution and in the Fourier domain: 

£(c * a){k)e-™k = Cie^A^e**) 
k 

where C and A are the discrete Fourier transforms of c and a, respectively. Consequently, 

we want to solve for 

i4(e*") = B^/Cie**)    OJER. 

Looking again at the definition of C, we can make an interesting observation. 

[C]* = (V>1,0, ^1,*) 

2/K   j   JO 

which implies 

i 
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With this in mind, we can express the second wavelet (orthogonal to the first) as 

&(0 = &(0-*(e«)^^ (4-3) 

The connection between this approach and a typical Gramm-Schmidt procedure is evident 

in the expression above. In Equation 4.3, the portion of fa being subtracted from fa is 

exactly the orthogonal projection of fa onto the space spanned by the integer translations 

of fa. To see this, write the dual of fa as 

l ,e\ -   &® 

Then 

[k€Z ) 

= E(^,fa('-k))fa(0e-iH 

fcez 

- B(1U«>- 
Writing the orthogonalized version of fa via the "orthogonalization trick", we have: 

^0,(0 = E^(e«)fa(0 ~ B(e«)fa(0 

fe |^*I (<**)&(* + 2**) - B(e*)fa(Z + ^rf)' 

Define i? by 

R(e*) = E*(e«)Q2(e«) - 5(e*)Qi(e*). 
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where Qi and Q2 correspond to the sequences which define ^i and ip2 in terms of Nm. 

Rewriting the expression for ^ as 

#(0 = R{e*l*)Nm(Zlp) 

(p (D,\R\*ENm)(&))t 

implies that R corresponds to a sequence which defines a semi-orthogonal wavelet. That is, 

the wavelet defined by 

satisfies 

i>2(t) = Y,r(k)Nm(pt-k) 
k 

<$(•-»)»&>   VneZ 

Notice that the definition for R involves sequences which are compactly supported so that 

the resulting semi-orthonormal wavelet ip'2 is compactly supported as well. The wavelet 

corresponding to the particular example is shown in Figure 4.3. We are assured this new 

-10 12 3 

Figure 4.3   Linear Spline Semiorthonormal Wavelet for p = 3 
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semi-orthonormal wavelet in conjuction with the first span the same space as the original 

two since Equation 4.3 is a Fourier domain expression for the Gramm-Schmidt procedure. 

A Fourier domain representation of the associated orthonormalized scaling and detail 

filters is useful in visualizing the results of this technique. Figure 4.2.3 is the magnitude- 

squared frequency response of filters associated with the the wavelets of the previous example. 

Performing the same type of analysis with m = 4, we can get the filters shown in Figure 4.2.3. 

Frequency Response (or p-3 Linear Splines 

0.4 0.5 0.6 
Normalized Frequency 

Figure 4.4   Frequency Response of p = 3 Linear Spline (m = 2) Approximation and Detail 
Filters 

For larger dilation factors, the technique outlined in the previous example is essientially 

the same. The Gramm-Schmidt procedure is performed iteratively so that at step k, a new 

semi-orthogonal wavelet is constructed which is orthogonal to the previous k — 1 semi- 

orthogonal wavelets. The fc-th semi-orthogonal wavelet can be written as 

fc-i p(fc)(V^ Ä 

(4.4) 
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Frequency Response (or p-3 Cubic Splines 

0.4 0.5 0.6 
Normalized Frequency 

Figure 4.5    Frequency Response of p = 3 Cubic Spline (m = 4) Approximation and Detail 
Filters 

where, as expected, 

Blk\e«) = 5>*,^>e*n 

and ip[ = ip\. By expressing ifa in (4.4) as a rational function via a common denominator, the 

compactly supported filter coefficients can be extracted in a manner similar to the example 

above. 

As an example, Figure 4.2.3 is the magnitude-squared frequency response of a set of 

linear spline approximation and detail niters when p = 4. 

From a practical standpoint, there are several things which must be.considered. As 

with any Gramm-Schmidt orthogonalization procedure, the order in which the vectors are 

"orthogonalized" has a great deal of effect on the final set of vectors. Furthermore, Gramm- 

Schmidt can have notoriously poor numerical properties[18], especially when the angle be- 

tween two vectors is small. 
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Frequency Response for p-4 Linear Splines 

0.4 0.5 0.6 
Normalized Frequency 

Figure 4.6    Frequency Response of p = 4 Linear Spline (m = 2) Approximation and Detail 
Filters 

Since it is generally desirable to have detail filters which have well-localized spectra, 

some design criteria must be applied to the construction of the semi-orthogonal wavelets. 

The technique used in this research is as follows. 

1. The nullspace vectors of A' are numerically calculated. From these vectors, a sym- 

metric and anti-symmetric set are formed from the sum and difference of the origi- 

nal nullspace vectors and their "flipped" versions. If possible, these vectors are re- 

normalized so they have integer values. This is generally possible since it is assumed 

that elements of A' have a similar integer-valued normalization. 

2. The discrete Fourier transforms are calculated for each of the vectors. For each of the 

discrete frequency bins {[nk/p, ir(k + l)/p]K=i, a nullspace vector is chosen which has 

its Fourier transform generally well-localized in that bin. This is a generally subjective 

choice since for some bins, especially those corresponding to the lower frequencies, no 
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one spectrum is localized there. In this case, the spectrum with the largest contribution 

is chosen. 

3. These p — 1 nullspace vectors are ordered according to the frequency bin with which 

they were associated. Then, starting with the higest frequency and progressing to the 

lowest, the vectors are "orthogonalized" via the Gramm-Schmidt procedure discussed 

above. If the vectors were chosen to have good frequency independence, the procedure 

will generally produce a set of p — 1 vectors corresponding to semi-orthogonal wavelets. 

A short remark about the last item above is in order. There are two cases where the 

technique fails to produce the desired results. First, if one of the selected nullspace vectors is 

a linear combination of the integer translations of the others, the Gramm-Schmidt procedure 

will produce the zero vector for that step in the iteration. Substituting another nullspace 

vector with similar frequency characteristics usually solves this problem. The second failure 

occurs when the Euler-Frobenius polynomials for the respective wavelets, E$k has a singular 

point. That is, E^,k(e^) = 0 for some £ G [0,27r). It is fairly easy to avoid this situation by 

judicious choice of the wavelets. Consider the following: 

^(^«ElM + arOI2 
i 

= - E IQ*(ei(*+2*0/p)C((£ + 27r/)/p)|2 

Pi 

= - E IQ*(ei(f+2,rj)/p)E^((e + 2^')/p) + 27rO|2 

Pj£ZP I 

= Dp{\Qk\2ENm}(0- 

Since Enm has no zeros on the unit circle, E^k will vanish only if \Qk\2 has a p ring of roots. 

This occurrence can be avoided by inspection of the spectra of the nullspace vectors. 

4-3   Summary 

This chapter presented an algorithmic approach to the construction of spline-based 

wavelets for an MRA with an arbitrary dilation factor.   One of the major results of this 
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chapter is the analysis of the relationship between the nullspace vectors of the integer- 

valued truncated system matrix A' and Wo, the Z^K) detail space associated with an MRA. 

Specifically, there is an isomorphism between the two spaces. Constructing spline wavelets 

can be cast as calculating nullspace vectors of special approximation operators. 

The p— 1 wavelets associated with a p-dilation MRA are not unique. There are degrees 

of freedom which can be exploited to construct wavelets which are optimized to criteria 

determined by the specific application. In this chapter, the wavelets which were constructed 

in the various examples were roughly optimized with localized bandwidths in mind. But the 

wavelets can be optimized with other criteria in mind simply be choosing the initial vectors 

in another fashion. 
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V.   RRA Frame Characteristics 

5.1    Introduction and Problem Statement 

Wavelets associated with multiresolution analyses form orthonormal bases for Li{ 

Because of the nice properties of orthonormal bases, the wavelet coefficients, a$/n = (/, ^„), 

uniquely characterize / in the following sense. If f,g € L2(R), and (f,ip^n) = (g,i>k,n) for 

all k, n e Z, then f = g a.e. on R Since the MRA wavelets form an orthonormal basis, the 

above expression holds as a simple consequence. Furthermore, an algorithm to reconstruct 

a given function from its detail coefficients always exists via the projection theorem and is 

stable, specifically, 

n    k  j=\ 

A stable reconstruction implies that if two detail coefficient sequences are "close" in the 1% 

topology, then the corresponding functions are "close" in the Z^R) Hubert space topology as 

well. Stability is a practical issue in the sense that it is not desireable to have small changes in 

the detail coefficients result in large changes in the reconstructed function. This is important 

for noise rejection. Since the wavelets associated with a rational resolution analysis are not 

orthogonal, these properties of unique characterization and stable reconstruction are not 

automatic and must be studied. 

The focus of this chapter is to study the extent to which RRA detail coefficients provide 

a unique characterization for functions in VQ and to what extent the reconstruction is stable. 

That is, we want to study the RRA detail coefficients 

d{& = (h-i,^n) (5.1) 

for /o € Vo- The two issues of unique characterization and stability are actually related and 

within the context of a Hilbert space, lead naturally to the concept of frames. 
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Definition 5.1.   [Duffin and Schaeffer] A set of elements {(pn}nez, in a separable Hubert 

space, H, is a frame provided there exist positive constants A and B such that 

^ll/l|2<EK/^n)|2<5ll/H2 
TlgZ 

holds for all / G H[Y7). The positive constants A and B are known as lower and upper frame 

bounds, respectively. ■ 

If {cpn} is a frame for a Hilbert space H, then the frame operator T : H —* H is denned 

by 

77 = £</^>«. 
nez 

The following theorem is taken from [6] (Theorem 3.2). 

Theorem 5.2. Let {(fn} be a frame for H and letT be the associated frame operator. Then 

the following hold: 

1. AI <T < BI, where A and B are the frame bounds and I is the identity operator on 

H and inequality is in the sense that AI < T =>• (Ax, x) < (Tx, x{ Va; G 7i. 

2. T is invertible and B~lI < T"1 < A~lI. 

3. {T~lipn} is also a frame with frame bounds B~l and A~1; this frame is known as the 

dual frame of {(pn}. 

4. For every fGH,f = £„(/, T^ip»)^ = £„(/, ipn)T~l<pn. 

Proof.   See Theorem 3.2 in [6]. 

■ 
The existence of the lower frame bound ensures the frame coefficients uniquely char- 

acterize /. That is, a non-zero lower frame bound is necessary for the following analysis to 

hold. Let f,geH. 

{f,<Pn) = (9,<Pn)=*(f-9,<Pn) = 0    Vn E Z 
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=>E\(f-9,<Pn)\2 = 0   VneZ 
n 

which is a contradiction of the frame condition unless f = g since we assumed A > 0 

existed. Thus, the lower frame bound characterizes in some sense the uniqueness of the 

representations. The smaller the lower bound, the "less" unique the representation 

It is possible, in principle, to reconstruct / from its frame coefficients if T is only an 

injective operator. However the stability requirement forces some reasonable limit on how 

much a function can change due to small changes in its detail coefficients. This amount of 

change is measured in the appropriate topology. In a rigorous sense, we want the frame 

operator T to be a bounded operator[19]: 

l|T|l=£s{w}=c<°°- 
The upper frame bound condition is similar to the one above and also characterizes the 

continuity of the frame operator since it is linear. It can be shown that the existence of the 

upper frame bound B implies the existence of C. Consider the following analysis: 

n n 

n 

= (£(/»¥>n)¥>n,/> 

= (Tf,f). 

The frame condition is then equivalent to 

A||/||2<<T/,/)<B||/||2   V/G« 

where A, B > 0 as usual. Now, (Tf, f) = ||T/||||/|| cos 7/ where 7/ is the angle between Tf 

and / for a given /. We assume 7 e [0, TT/2] since (Tf, f) is non-negative. Moreover, we can 
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bound cos 7/ > a > 0 with a € (0,1] since otherwise would contradict the existence of the 

lower frame bound A in the following manner: 

^ll/ll2<£K/^n>|2 = <77,/>  v/ew 
n 

which implies 

41/11 <||r/||cos7/ v/€«. 

Thus, there exists no / € H such that ||/|| ^ 0 for which cos7/ = 0. Therefore, by applying 

the upper frame bound condition, we have 

WaSB v/ew 

so that 

lir/ll < B 
a 

C<oo   v/ew. 

Prom a heuristic standpoint, it is difficult to assign physical meaning to the values of 

A and B. In some sense, the relative difference between the values gives an indication as 

to how "uniform" the frame elements are distributed in the Hilbert space. Specifically, the 

greater the difference between A and B, the less uniform the distribution. The magnitudes 

of the frame bounds give some indication as to the normalization of the frame elements and 

the redundancy. 

A simple example of these concepts is the Euclidean plane, RxR, with two frame 

elements <pi = (r cos 7, r sin 7) and ipi = (r cos 7, —r sin 7) where 7 € [0,7r). This is illus- 

trated in Figure 5.1. Considering elements on the unit circle, fg = (cos 6, sin 0), the upper 

and lower frame bounds are A = 2r2 sin2 7 and B = 2r2 cos2 7. Thus, as the angle between 

the frame elements gets smaller, the difference between A and B gets larger. The case where 

7 = 7r/4 or 7 = 37r/4 corresponds to an orthogonal basis and A = B. Scaling the frame 

elements simply scales the frame bounds. With r = 1, we have A = B = 1. The case where 
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(r cos 7, r sin 7) 

(rcos7, — rsin7) 

Figure 5.1    Euclidean Plane Frame Illustration with 2 Elements 

7 = 0 does not correspond to a frame since A = 0, but it does give some insight into the 

effect redundancy has on the upper frame bound which is B = 0 in this case. 

To see the effect of redundancy consider a modification of the previous example where 

an additional frame vector (p = (r, 0) is included as shown in Figure 5.2. In this example, the 

(r cos 7, r sin 7) 

M) 

(r cos 7, — r sin 7) 

Figure 5.2   Euclidean Plane Frame Illustration with 3 Elements 

upper and lower bounds are A = 2r2 sin2 7 and B = r2(2 cos2 7 + 1). Thus; the case where 

7 = 7r/4 corresponds to A = 1 and B = 2 (when r = 1). Thus, redundancy affects the upper 

frame bound. Notice that A = B = 3/2 when 7 = 27r/3. The value of the frame bound 

gives an indication of the redundancy; we have three frame elements in a two dimensional 

space. In that case, the three frame vectors are uniformly spaced around the unit circle. If 
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the frame vectors are normalized, \\<pn\\ = 1, and A = B = 1, then the frame is actually an 

orthonormal basis as shown in [15]. 

The remainder of this chapter is organized as follows. First, we discuss the RRA in 

the context of frame calculations and introduce adjoint wavelets. In the next section we 

prove the the RRA detail coefficients satisfy the frame conditions and thus prove the adjoint 

wavelets form a frame for an approximation space of arbitrarily fine resolution. The final 

section is a discussion of the frame bound estimation for the RRA and associated issues. 

5.2   Adjoint Wavelets 

5.2.1 Introduction and Preliminaries. The RRA has certain peculiarities which 

make calculating frame bounds more difficult than the MRA. It was mentioned in Chapter II 

that one major difference between the two was the manner in which successive approxima- 

tions were performed. An elegant feature of the MRA is that the projection of an arbitrary 

element / G I/2(K) onto a particular approximation space is calculated by using the projec- 

tion of / from the previous approximation space. Thus, for the MRA, the following is an 

equivalent statement of the frame condition: 

0 < ^||/||2 < E E E Mai2 < BWf\? < oo. (5.2) 
i=i fcez nez 

With the RRA, this is not the case since the projection of / onto a particular approximation 

space is generally not equivalent to the projection from the previous approximation space. 

That is, given / G L2(K), we have PVkf # PvkPvk^f in general. 

This requires us to modify the RRA frame calculations in two ways. First, we assume 

we want to investigate the frame characteristics of the wavelets for an approximation space 

Vk, where k is chosen sufficiently negative so that Vk is arbitrarily "close" to Z^R). Without 

loss of generality, we can assume k = 0. Making this assumption gives us a "starting point" 

in the frame analysis. This assumption is justified in any practical application of the RRA 
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since the "starting point" is usually defined to correspond to the sampling rate associated 

with the signal in question. 

The second modification involves the detail coefficients defined in (5.1). Suppose we 

choose /o G Vo arbitrarily and calculate the corresponding detail coefficients for a particular 

RRA. The coefficients at a particular dilation level, k > 0, are calculated as the the inner 

product between the particular wavelet and /fc_i, not /0. Except for k = 1, the detail 

coefficients do not represent the inner product of the original function with the dilated 

wavelets. Thus, it is difficult to correlate a representation such as (5.2) with the frame 

definition. To compensate for this, adjoint wavelets are introduced. 

5.2.2   Definition of Adjoint Wavelets.      An adjoint wavelet is defined implicitly as 

follows: 

Definition 5.3.   Within the context of an RRA, the adjoint wavelets, $jj, are defined by 

The reason for the use of the term adjoint is now clear from this definition. Now, the 

study of the RRA detail coefficients can be posed as whether or not the adjoint wavelets 

form a frame for VQ. 

The adjoint wavelets are easily calculated in terms of the various filter coefficients. 

Consider the following example. 

Example 5.4. We want to calculate $£J so that d^J = {h,W%})- 

= Eci(n)9iJ)(n-pl) 
n 

= E E Co,nhr(qk - pn) g^\n - pi) 
n     k 
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which implies 

= E Co." E hr(<ln ~ Pk) 9U)(k - pi) 
n k 

= (/o, E h^n ~ Pk) 9U\k - Pl)<t>Q,n 

$} = E E hr(qn - pk) g«\k - pl)<j>0>n. 
n     k 

Generalizing the result of this example, we can explicitly write an expression for the 

adjoint wavelets in terms of the approximation and detail filter coefficients: 

Ä1 = E E""" E ^MoMfifo - Ph)hr(qh - ph) ■ • • hr(qlk-2 - plk-i)gU)(lk-i - pk) 
lo,h,...,lk-i€Z 

Recognizing this expression as the sequential projection of ifä!jk from one approximation 

space to the previous, we can succinctly define the adjoint wavelets by 

where 

vk*k ~
1Wk^k,h 

P\vk = -FVo-fVi-Pvs! '"pvk- 

Notice that P^  is simply the adjoint of the sequence of orthonormal projection operators 

which take / to Wk via an RRA. 

5.2.3 Characteristics of Adjoint Wavelets. As a side effect of the RRA, the adjoint 

wavelets have several unfortunate characteristics. The major disadvantage of the adjoint 

wavelet approach is translational dependency. Consider Example 5.4. again. Ideally we 

would like to have the subscripts on the adjoint wavelets represent integer translations of 

the "mother" adjoint wavelet. This is not the case as seen from the following analysis. 
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With the RRA, we desire fy'((t) = i>k0(t — rkql) similar to the MRA where we desire 

Ykfo) = vkfl{t~Pkl)- Consider the case where k = 2. Let I € Z be fixed arbitrarily. Define 

integers u and mby I = qu + m where m € Zg. That is, let u = I div q and m = I mod q. 

$2u+m(*) = £ E Mfl» ~ 1»)0Ü)(* - MW - pm)<j)o,n(t) 
n     i 

= £ £ Är(flf(n - P2«) - J»)ä
ü)

(* - pm)<f>o,n(t) 
n     i 

= £ £ M?« " P»)^Ü)(* - F^)^o,n+p2«(*) 
n     » 

= £ £ M«» - Pi)9U)(i ~ pm)(j)Q,n{t - p2u) 
n     i 

= Ä2.(*-A). 

The analysis above is easily generalized to other dilation levels &: 

^-1u+m(*) = C(*-A). (5.4) 

This indicates that at a given dilation level, k, the adjoint wavelets are translated versions of 

a set of qk~l adjoint wavlets. That the set of gfc_1 adjoint wavelets are unique is evident by 

observing the translation of a single adjoint wavelet by rkq forces a misalignment of the knots 

of the representation in Vo. As A; increases, number of unique wavelets grows exponentially. 

While this is generally discouraging from an analysis point of view, in practice, the 

actual wavelets are never used in their continuous forms. Only the corresponding niters 

are used and we can determine the frame characteristics directly from the filters and never 

concern ourselves with the wavelets. However, it is important to realize the role the adjoint 

wavelets play in the frame analysis since it is they that form the frame for an arbitrary Vo 

and not the wavelets used at each level of the decomposition. The majority of the attention 

from this point forward will be paid to the analytical and numerical existence and estimation 

of the RRA frame bounds. 
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5.3   Existence and Estimation of RRA Frame Bounds 

5.3.1 Preliminaries. Given a spline-based RRA with an arbitrary dilation and 

regularity, the adjoint wavelets associated with a particular approximation space V* form a 

frame for that space. The proof of the existence of the upper and lower frame bounds are 

treated separately. The following lemmas will be useful in both cases. 

Lemma 5.5. IfVk-i andVk are adjacent approximation spaces in a spline-based RRA, then 

V^Vk-xHVk 

where Vk' is the sub-approximation space defined earlier. 

Proof. As usual, let p/q be the rational dilation factor and m be the regularity factor. 

Without loss of generality, assume k = 1. We need to show subset inclusion in both direc- 

tions. Prom the definition and the fact we are dealing with spline-based scaling functions 

and wavelets, we have V[ C Vo D Vi. Thus we need to show Vo D Vi C V[. 

Choosing / G Vo D V\ arbitrarily, there exist 1% sequences CQ and Ci such that 

f(t) = Y,Co(k)N™(t-k) 
k 

= E*(W»(«*/*-*). 
k 

where the above expressions represent expansions in the standard non-orthogonal 5-spline 

bases for Vo and V\. Expressing these relationships in the Fourier domain yields 

/(0 = 0>(e*)JVm(0 

= p/qC1(eiM«)ftn(pt/q), 

from which we have 

qf(QO = QCo(e^)Nm(qO 
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= pC1(eirt)Nm(P0. 

From the definition of ra-th order cardinal S-spline, we have 

1-e* 
l^mCOl = 

% 
,   £e 

For the interval [0,2ir), this implies the zero sets of Nm(q-) and Nm(p-) are {2irl/q}i~l 

and {2%l/p}^~i, respectively. Furthermore, since the two expressions for qf(q£) above are 

equivalent and are continuous, their zero sets must be equal. This has useful implications 

for Co and C\. Specifically, the zero sets of Nm(p£) and Nm(q£) intersect only at £ = 2irl for 

I € Z and I ^ 0 since p and q are relatively prime. 

To see this, suppose there was a point r in (0,27r) which was a zero point of both 

Nm(p£) and Nm(q£). Then there exist k, I € N with k < p and I < q such that pr = 2nk 

and qr = 2irL Equating r in both of these expressions leads to p/q = k/l. Since k < p and 

I < q, this implies there exists an integer j > 1 such that p = kj and q = Ij, or that j is a 

factor common to both p and q. This contradicts that p and q are relatively prime. Hence, 

no such r can exist. 

The result is that Co(e*9^) must vanish for £ = 27i7/p for Z = 1,2,.. .,p — 1 and, 

conversely, Ci(eip^) must vanish for £ = 2irl/q for I = 1,2, ...,q — 1. Looking at Co for now, 

the following holds due to the 27r-periodicity of Co and the relative primeness of p and q 

P-1 f^   /   «»J/nslP-1 

{c0(e
i2^)};;; = {c0(e^/*)}p;;=M:}. 

The validity of this last statement holds since {ql mod p}iezp = Zp which is a restatement 

of Lemma A.l. 
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Thus, it follows that Sp{e*) divides C0(e*). More accurately, S™(e*) divides C0(e^) 

since the degree of the zeros is m. Thus, with Co defined by CQS™ = Co, 

or 

HO = Öo(e«)^(e«)je(0 

The last two factors in the expression above combine via the cardinal S-spline identity: 

so that 

/(fl = Öo(e*)fö(pO 

which is to say that / can be written as 

f = 'E$i(n)Nm{-/p-n) 
n 

which implies / € V[. Since / was chosen arbitrarily in the intersection of VQ and V\, the 

analysis holds for all such elements so that Vo n V\ C V[ which completes the proof. 

Corollary 5.6. Let Vk-\ and Vk be adjacent approximation spaces in a spline-based RRA. 

Let Vk be the associated sub-approximation space as in the previous lemma and let Wk be the 

usual detail space which is the orthogonal complement ofVk' in Vk-i. Define Wj. to be the 

orthgonal complement ofVk' in Vk. That is, Vk' © Wj. = Vk. Then 

wknw^ = {o}. 
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Proof. We need to show subset inclusion in both directions. Without loss of generality, 

assume k = 1 as in the previous lemma. We have {0} CWfcnWj( by definition. Now, choose 

g € Wk n Wl arbitrarily. This implies g G Vk-i f"l Vk, which implies via Lemma 5.5. that 

g e Vk. Since g €W'k which is orthogonal to V£, we must have g = 0. Similarly, g € Wk D V{ 

imples g = 0. Since p was chosen arbitrarily, the analysis holds for all such g which implies 

Wk n W'h = {0} and completes the proof. 

■ 

5.3.2 Existence of an RRA Lower Frame Bound. A non-zero lower bound indicates 

the RRA frame operator has a bounded inverse and that the detail coefficients for a particular 

signal is a unique characterization of that signal. The proof of a non-zero lower bound is 

provided in the following Theorem. 

Theorem 5.7. For an RRA, the adjoint wavelets satisfy the lower frame bound condition 

for VQ with A = l. 

Proof. Assume /o is an arbitrary unit-norm function in Vo and that fk = Pvkfk-i as usual. 

At each iteration of an RRA decomposition, the following holds: 

IIA-ill^lli^A-ill' + lliV./fc-ilP 

since Vk' and Wk form an orthogonal decomposition of Vk-v Furthermore, 

II^A-ill2 = HAH2 = ||JV*||a + H'V*!!2 (5-5) 

since since Vk' and W£ form an orthogonal decomposition of Vk. Substituting Py^/fc-i = Pv^fk 

in the previous expression leads to 

\\PvJk-A? > H^A-ill2 
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with equality if and only if Pw1 fk = 0. Substituting this expression into (5.5) and iterating 

on the index k yields 

El|P^A-i||2 + ||/Ar||2>||/o||2 = l. 
fc=i 

Taking the limit as N —► oo and using that 

Hin N/jvll = 0, 
iV—»00 

which is a consequence of the fact that C\jezVj = {0} which was proven by Daubechies[15] 

independent of dilation factor and the embedding of approximation spaces. This gives us 

the following result: 

N oo p-1  oo 

Hm E IIJW*-iil2 = E IIJW*-ill2 = E E E l4il2 > i 
A~*°°fc=l fc=l j=lfc=ln€Z 

which implies a lower bound A > 1 since the dj^„ represent the inner product of /0 with the 

corresponding adjoint wavelet. 

■ 
This result is somewhat intuitive since the wavelets are normalized but there is energy "carry- 

over" from one detail space to the next since they are not orthogonal and are correlated in 

some sense. 

One question which naturally arises is whether or not there exists some function f EVQ 

for which the lower frame bound is acheived. The answer to this is not clear. For the 

Haar case (m = 1) a class of functions which acheive the lower frame bound is simple to 

describe and contract. However, for more regular RRA's the numerical evidence supports 

the conjecture that the best you can do to achieve the lower bound is to construct a sequence 

of functions whose lower bounds approach unity. Furthermore, it is not clear what effect the 

choice of dilation factors has in this result. 

As indicated in the previous section, the existence of a non-zero lower bound implies 

the frame coefficients provide a unique representation of VQ and that the frame mapping T 
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has no null space. This has the further implication that any signal can be represented via 

the frame coefficients. That is not to say the adjoint wavelets span the approximation space 

VQ. We would have to have a closed-form synthesis formula whereas now we only have a 

reconstruction algorithm which is iterative and the existence of a closed-form equivalent is 

questionable. 

5.3.3 Existence of an RRA Upper Frame Bound. The proof and estimation of 

an upper frame bound B follows closely from the analysis of the lower frame bound. The 

following lemma will be useful in proving the existence of an upper frame bound for the 

spline-based RRA. 

Lemma 5.8. Let Wk and W^ be detail spaces of a spline RRA as defined as in Corollary 5.6.. 

Then there exists an a < 1 such that 

\\Pw>9\? , 
sup     n *      = a < 1.. 
gewk     \\9\r 

Proof. Without loss of generality, assume k = 1. The first step in this proof is to show the 

supremum is achieved for some g €.W\. Since Wk is a Hilbert space, the closed unit sphere is 

a weak* compact subset of Wk. Since \\Pw'k • ||2 is a continuous real-valued functional defined 

on a weak* compact subset of Wk, it is bounded and achieves its maximum. For details on 

this result and on weak* convergence, see Luenberger[26], section 5.10. 

Now suppose the maximum a = 1. Since W\ is closed, there exists a g € W\ such that 

11 <7|| = 1 and ||Pyr'<7|| = 1. This implies that g G W[ since Pw' is an orthogonal projector. 

This is a contradiction in light of Corollary 5.6. and the assumption g ^ 0. Hence a < 1 

exists. 

Theorem 5.9. For an RRA, there exists a finite upper frame bound B for the adjoint 

wavelets associated with VQ. 
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Proof. The analysis of the upper frame bound is ultimately concerned with the energy 

in the successive detail spaces. At each level in a decomposition, the energy in a particular 

approximation space, Vk-i, is partitioned into the primed approximation space, V£, and the 

detail space, Wk- The energy in Vk is directly and entirely "transferred" into Vk since there 

is a subset relationship between the two. The maximum fraction of the energy from the 

detail space Wk which is effectively "transferred" via projection from Vk-i to Vk is a defined 

in the lemma above. 

Hence, if Xk € [0, l] is defined to be the fraction of the energy of Vk-i contained in 

Wk, then 1 — Xk is the fraction contained in Vk' (and thus V*) and the maximum proportion 

transferred from the detail space will axk- Letting Vk denote the energy of a particular signal 

in Vk, we have 

Vk < vk-i(l - xk(l - a)), (5.6) 

and the total energy associated with the RRA representation of the particular signal is 

00 

E = J3 Xkvk-1 
k=l 

and the upper frame bound is the supremum of this expression taken over all signals in VQ 

such that VQ = 1 and all such xk. This supremum corresponds to the case when Xk = 1 

identically for all k G N as seen by the following analysis. 

If we assume equality in (5.6) and let b = 1 — a then 

k 

Vk = Yl^-bxj) 

and the upper frame bound satisfies 

00 

B < sup Yi XkVk-i 
k=l 

oo 

< sup J2 Xk 
x   k=l 

Jb-1 

II1-^ 
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and 

oo *-l N k-l 

I>*   IK1 - hxo)   = $M £ xk   II (! - &xi) 
fc=l        |_j'=l . ->°°Jfc=l ,7=1 

= lim WIjLiO-M' 
AT-»oo ft 

1 - limjy-^oo njLi(l - kcj) 
b 

_i-n^1(i-fai) 

The second step in the derivation above is a result of an identity which can be easily proven 

by induction as follows. 

It is clear that for N = 1 we have 

&E^n(i-&^)=i-n(1-^) 
fc=l       j=l j=l 

Assuming the previous statement holds for an arbitrary JV, it is easy to show it holds for 

N + 1 as follows: 

N+l       k-l N        k-l N 
b E xk IK1 - bxi) = &£** IK1 - hxi)+bxN+i IIC1 - bxj) 

k=l       3=1 k=l       3=1 j=l 

N N 

= 1 - n(l - fy) + bxN+1 n(l - tej) 
3=1 j=l 

= l-n(l-tei)[l-teJV+i] 
i=i 
N+l 

= i-H(i-bXj) 
3=1 
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Thus by induction, the statement holds for an arbitrary JVGN. The end result is 

ll00 

B<sM---ll(l-bxj)} 
x    b     b f 

*£-«{£ fid-«*» 6   * i/=i 

<i= 
b     1-a 

In the last step, the infinum is achieved for Xj = 1 identically. With the assumption VQ = 1, 

then B < oo for all choices of rr* since a < 1 as seen in Lemma 5.8. This result, along with 

that of the previous section, indicates that the spline-based RRA satisfies the requirements 

for a frame. Furthermore, the result is independent of dilation factor and/or regularity. 

5.3.4-   Estimation of the RRA Upper Frame Bound.     To actually calculate the value 

of a (or 6) for an arbitrary dilation factor and regularity, the analysis quickly becomes more 

complicated. Consider the following optimization problem. Given V\ and W\, find a such 

that 

a= sup H-Pviflil2- 
gewi 
\\9\\=l 

With g expanded in terms of the orthonormal basis for W\: 

the objective function can be expressed as the inner product of Py^ with itself: 

J(d) = HPy^ll2 

= (PVlg1PVlg) 
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= (E E E <^{n){$l M^i,fc, E E E * V)<C Mtu) 
\ k  j'=l   n I   i=l  m I 

= E E E E dU) (n)d»(m) (E^S> M^ E<Ä> <M^) 
j=l   n   t=l  m \ k I ' 

= E E E E dU) (n)d^(m)(Pv^l Wl%) 

= E E E E d^\n)d^{m){^l Ä) 

where yj^ = Pv^il- This objective function can be written succinctly in tensor notation: 

«7(d) = djnAjniidu 

where Ajnii = {ipi}n, (Pijm) is a Hermitian-symmetric fourth-order tensor. As with matrices, 

the Hermitian symmetry ensures the eigenvalues will be non-negative. The maximum value 

is the largest eigenvalue and the maximizer is the corresponding eigenvector. 

This theoretical result is all well and good, but calculating a in this way is not practical 

because the values of the tensor are calculated by taking the inner product of one adjoint 

wavelet with a translated version of another. Since the adjoint wavelets are infinitely sup- 

ported (albeit with exponential decay) the tensor is effectively infinite as well which makes 

the calculation of its eigenvectors and eigenvalues very difficult. 

One approach is to use the exponential decay of the adjoint wavelets to form an ap- 

proximation of the tensor which is finite. The tensor is truncated at the point where the 

magnitude of its values fall below some threshold (the machine precision, for instance) and 

the corresponding eigenvalues and eigenvectors can be calculated since the tensor is now 

effectively finite. 

A simple example of this is to consider the m = 1 RRA with p = 3 and q = 2. Since 

the adjoint wavelets are compactly supported, we would expect the associated tensor to be 

finite as well. The following example illustrates this. 
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Example 5.10. Assume we have an RRA with p = 3, q = 2, and m = 1 (the piecewise 

constant splines). We want to calculate the constant a defined above. Without loss of 

generality, assume k = 1 as usual. Furthermore, assume we have a signal g\ € W\ and that 

||piII = 1. We can represent g\ as 

The projection onto V\ is given by 

Pv,9i = £££^n)<^i,^i,< 
/   3=1  n 

= ££d°'V)JV^g. 
3=1   » 

With the two well-used "standard" wavelets 

^i2 = V^Ä^o - yfipfofi, 

we have 

J\**S = (l/3)-1/2(0i,o - 0i,i) 

so that 

and 

PVl9l = (l/sy/^d^in)^^ - 0lj2n+1) 

\\Pvl9i\\2 = l/3£ \d*\n)n<}>lM - <ß1>2n+1\ 
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= 2/32>(2)(r*)|2 

n 

<2/3 

where the last step is a consequence of the assumption that ||<7i|| = 1. Thus we have 

calculated a for the piecewise consant spline RRA with dilation factor 3/2. Prom this we 

conclude B < 3. ■ 

The calculation of an estimate of the upper frame bound in the way described above 

has a severe drawback. The value of a represents the maximum fraction of energy which 

is "transferred" between the detail space Wk and the next approximation space V*. The 

estimation of the upper frame bound is based on the worst-case scenario by which we could 

construct a function which could transfer that maximum fraction of energy, a, at each and 

every level of the RRA. 

This scenario is unrealistic because it does not reflect that each level of decomposition in 

an RRA (or MRA for that matter) corresponds to a bandpass filtering of the original signal. 

The location of the passband corresponding to a particular level of decomposition relative to 

that of an ajacent level depends upon the dilation factor. For MRAs, adjacent passbands do 

not "overlap" in the sense that their corresponding detail spaces are orthogonal. For RRAs, 

the passbands do intersect and a particular frequency might be "covered" by the passbands 

corresponding to a series of ajacent levels of decomposition. The important similarity in 

both cases is that the center frequencies of the passbands approach zero as successive levels 

of decomposition are performed. Thus, a function constructed to have a maximum energy 

transfer for all levels of a particular RRA would necessarily have a spectrum which is not 

well-localized. Considering a unit-energy function, the maximum fraction of energy might be 

transferred at a particular level, but the amount of that energy would have to significantly 

less than unity which automatically ensures the estimate of the upper bound developed 

earlier will not be achieved. 

This observation suggests another way to get a handle on the upper frame bound es- 

timation. Suppose we assume the detail filters have a perfect passband. This corresponds 
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to taking the regularity m to infinity. Thus, in the frequency domain we can assume the 

various detail filters are piecewise constant and well-localized. For sake of illustration, con- 

sider the case where the filters corresponding to particular level of an RRA decomposition 

occupy the frequencies from 1/p to 1. The next detail space will have filters which occupy 

the frequencies between q/p2 and q/p. Further multiplication by q/p yields the bandwidth 

limits of subsequent decomposition levels. 

We can estimate the upper frame bound by calculating the maximum number of adja- 

cent detail spaces which have an intersection. Formulated in terms of the "perfect" bandwith 

limits in the previous paragraph, we want to find the maximum n such that 

<PJ     p 

Solving for n, we have 

( 

n=   —    . (5.7) 
1-logptf 

Note that for the case where q = l, the MRA case, this formula for the estimate of the upper 

bound yields n = 1 which is as expected. 

It is assumed the accuracy of this upper bound for the frame bound B increases mono- 

tonically with the regularity. This assumption is justified by the observation that the width 

of the transition regions of the detail filters becomes more narrow with the regularity and 

that the frame bounds are greatest when the passband is maximally flat. 

5.4    Summary 

The most significant result of this chapter is that the spline-based RRA is a stable and 

unique decomposition of the initial approximation space Vo. The supporting analysis for this 

result focuses on the theory of frames and, specifically, the proof of finite frame bounds. In 

order to apply the concept of frames, it was necessary to introduce the concept of adjoint 

wavelets and discuss their properties. 
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It was also necessary to explore the relationship between adjacent approximation spaces 

in terms of the projection operator induced by the RRA. It was especially necessary to 

characterize the projection from one to the next those functions which were specifically 

not in the intersection. This characterization let to an important lemma which stated the 

intersection between two adjacent approximation spaces, Vk-i and Vk, was solely the primed 

approximation space, V^'. The corollary to this lemma stated that the intersection of the 

detail space, Wk and the primed detail space Wl was solely the null vector. Furthermore, it 

was shown in a subsequent lemma that the orthogonal projector was suboptimal in preserving 

energy in the sense that the projected function always had less energy than the original 

function. This observation formed the basis for the proof of the existence of the upper frame 

bound. 

Estimating the upper frame bound led to two different formulations, one more useful 

than the other, though both were illuminating. The first focused on the calculation of the 

frame bound as a worst-case scenario used a fourth-order tensor eigenvalue calculation. This 

was of limited practical use since the manipulation of the tensor was difficult and necessarily 

involved an approximation since certain infinite sequences had to truncated. 

The second formulation dealt the limiting case where the regularity of the RRA ap- 

proached infinity and the relative bandwidths of the filters associated with adjacent detail 

spaces as defined by the dilation factor. As regularity increased, the bandwidths of the 

various filters became more localized with sharper cutoffs. The estimate simply relied on 

counting the maximum number of overlapping detail filter bandwidths which reduced to a 

simple function of the dilation factor. 

Further work needs to be done in estimating the upper bound, however. An analysis 

similar to that by Daubechies in [15] would be the most useful for developing a tighter 

upper frame bound and, in fact, is easily extendable for integer dilation factors greater than 

2. However, that analysis depends upon the frame elements being translated and dilated 

versions of a set of mother wavelets which is not the case with adjoint wavelets. It is not clear 
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how to apply such an analysis to the case of the RRA and so it remains an open research 

area. 

The primary issue in further characterization of the RRA is the analysis of the effect of 

the upsample and downsample operations in the implementation of the projection operation. 

It is difficult to visualize, in the frequency domain, the dilation of a signal by q followed by 

the "compression" (via downsampling) by p. This remains the primary focus for subsequent 

research in this area. 
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VI.  Application of the RRA to the Specific Emitter Problem 

6.1    Introduction and Background 

This chapter demonstrates a simple application of the RRA to a real-world, practical 

problem. The goal is to illustrate the advantage the RRA has over the MRA measured 

by the ability to create salient features in the specific emitter identification (SEI) problem. 

The application follows along the lines of that developed by Devaney[16] at Northeastern 

University where the entropy of the detail and approximation coefficients of an MRA and 

wavepacket decomposition were used to form feature vectors from radar pulses. These feature 

vectors were then subsequently used for training and identification of the radar pulses. The 

remainder of this section provides some background on the SEI problem, the use of resolution 

analyses (MRA, RRA, and wavepackets) and the entropy metric to generate feature vectors 

from sampled radar pulses, and development of a simple Bayesian-like classifier. 

6.1.1 Specific Emitter Identification. In a tactical intelligence gathering scenario, 

many radar pulses are received from various locations of interest. Often these radar signals 

are differentiated by obvious characteristics such as pulse repetition frequency, pulse width, 

and carrier frequency. These differences are often enough to distinguish one emitter from 

another, such as a search radar from a tracking radar. There are times, however, when two 

radars are nearly identical and share nearly the same characteristics mentioned above and 

there is a need, from an intelligence standpoint, to be able to determine which specific radar 

generated a particular intercepted signal. This type of information is useful in tracking the 

"when" and "where" of specfic air defense radars in tactical environments such as the Persian 

Gulf or Bosnia. 

Assigning a particular signal to a particular radar emitter in this case is a difficult 

problem because of the reason mentioned above: the radars are designed and manufactured 

to be identical aside from their serial numbers. It follows that any solution to the problem 

must rely on the differences between the radars which are not intended, such as minor 
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variations in the tolerances of critical parts during the manufacturing process. Examples of 

some critical parts are the travelling wave tubes, power supplies, antennas, and switching 

hardware. 

When we speak of radar signals, we mean the radar pulse. Radar pulses are character- 

ized by what is known as the amplitude and frequency videos. A video is simply the baseband 

information coded into the pulse. The following figure illustrates this. The frequency video 

Radar Pulse Amplitude Video Frequency Video 

M 

Figure 6.1    Illustration of Radar Pulse Videos 

illustrates a nearly linear increase in frequency throughout the duration of the pulse which 

is characteristic of a linearly chirped signal. Both amplitude and frequency videos illustrate 

the irregularities due to manufacturing which serve to identify the specific emitter. While 

this suggests a processing scheme which first extracts the videos from the particular pulse, 

this is not necessarily the only way to design an algorithm. In fact, the schemes presented in 

the remainder of this introduction are based on processing the (sampled) pulse as an entire 

unit rather than deal with the videos as entities unto themselves. This is discussed next. 

6.2   Feature Vectors from Radar Pulses 

The processing we perform on a the sampled radar pulse data results in a feature vector 

which is then used for classification and/or training. In pattern recognition algorithms, 

feature vectors are designed to highlight the differences between signals so that classification 

can be performed. Furthermore, processing signals to yield feature vectors generally reduces 
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the amount of data involved with the classification. A feature is salient when it is especially 

important in distinguishing between the patterns. Given a processing scheme which generates 

salient features, classification is often almost trivial. However, knowing a priori the saliency 

of features generated via various feature extraction algorithms is sometimes difficult. This 

complicates the design of those algorithms. 

The approach taken in this chapter is to use the RRA, MRA, and wavepacket decom- 

position coefficients (both detail and approximation) as the basis for the construction of a 

feature vector. The idea is relatively simple. We assume the sampled radar signal represents 

a set of approximation coefficients of some signal which exists in some approximation space 

Vo. Of course, this approximation space is denned in terms of the particular analysis we 

are performing, the choice of basis functions, and the dilation factor. The signal is then 

decomposed and the sets of detail and approximation coefficients are then used to create the 

feature vector. An specific example follows shortly. 

Resolution analyses do not really provide any data reduction in the sense that the 

resulting number of approximation and detail coefficients are less than the number of samples 

in the original signal. In fact, due the redundancy in representation, the RRA produces more 

coefficients than the original signal. Hence, this information must somehow be reduced to 

form the final feature vector. A logical choice, and the method chosen by Devaney, is to 

reduce each set of approximation and detail coefficients to a single number via the entropy 

metric. Entropy is a rough measurement of the spread of a set of numbers or a distribution. 

For continuous probability distributions, the entropy, 5, is is defined to be 

S = -E{]nfx} = - f fx{x)\nfx(x)dx 
Jx 

where fx is the probability distribution of a random variable X[35] and E is the expected 

value operator. It is assumed the distribution is unit normalized since a measurement of 

spread (or localization) should be independent of relative magnitude. 
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For a discrete set of numbers, entropy can be expressed as 

£ = -X>n|2ln(|:rn|2) (6.1) 
n 

where it must be assumed that x is unit norm (I2 norm).   Looking at these two entropy 

expressions, the greater the entropy, the more evenly distributed the function (or set) is. 

As a discrete example, consider the case were we have two unit-norm I2 signals, say x 

and y. Further suppose these signals are compactly supported on [0, N - 1] and that 

x{n) = 6(n) 

y(n) = 1/VN 

The energy in x is perfectly localized so that £x = 0 while the energy in y is uniformly 

distributed so that £y = ]nN. 

Used in conjuntion with resolution analyses, entropy measurement can be very useful 

for determining the significance (and thus, saliency) of a particular set of decomposition 

coefficients. Since entropy is not dependent upon the amount of energy in the signal, the 

resulting feature is not dependent upon the gain of the system used to collect the signal. 

Throughout the previous chapters and especially throughout the development of the 

RRA, the implicit goal was to use the RRA in the front-end of a feature extraction scheme. 

The goal of this chapter is present a classification experiment which compares and contrasts 

the results obtained with the RRA with that of the MRA and wavelet packets. The exact 

description of the classification trials will be described in the next section, but a justification 

of why the RRA should outperform the MRA and/or wavelet packets follows here. 

From a frequency spectrum point of view, the RRA detail coefficients provide a re- 

dundant representation of the signal since the bandpass filters corresponding to the various 

adjoint wavelets are not "orthogonal" to one another as the MRA and wavelet packet filters 

are. More specifically, the RRA filters overlap from one decomposition level to the next which 
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increases the liklihood that an important piece of spectral information will be highlighted 

instead of slipping through the MRA and wavelet packet "gaps". 

6.2.1 Classification. Given a particular radar signal, classification is the problem 

of correctly determining the specific radar which generated the signal. In a more general 

sense, we are trying to classify a pattern from its associated feature vector. In our case, 

the feature vectors are composed of the entropies of several levels of detail coefficients. The 

feature vectors for each class have some probabilty distribution which is generally unknown 

to us or we assume knowledge of. 

Classifying an unknown feature vector becomes a simple matter. An unknown feature 

vector is assigned to the class for which the probability distribution is maximum. Another 

way of thinking about the classification is to imagine the each class as an ellipsoid in multi- 

dimensional space. The center of the ellipsoid is characterized by the mean and the shape 

and/or orientation is determined by the covariance matrix. Given a feature vector, we choose 

the class for which the distance to the associated ellipsoid is minimized. This distance is 

known as the Mahalanobis distance [35]. This distance from a feature vector x to the ellipsoid 

of class j can be written as 

7j-(x) = (x - m^Cj^x - m,) 

where m, and Cj represent the mean vector and covariance matrix, respectively. Thus, the 

assigned class k is defined to be 

k = argmin{rj(x)}. 

6.2.2 Example Feature Vector Formation. To illustrate the resolution analyses 

which go into the processing to form feature vectors, consider the RRA case where p = 3 

and g = 2 and we will use 5 levels of decomposition to form the feature vectors. This is the 

actual processing for one of the RRA cases described later in this chapter. For this example, 
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Set Entropy 

d2(l) 
di(2) 
d2(2) 
di(3) 
d2(3) 
dx{A) 
rf2(4) 
rfi(5) 

d2(5) 

3.7970 
3.6702 
3.5811 
3.3897 
2.9680 
3.0509 
2.6487 
2.6180 
2.2103 
2.2437 

Table 6.1   Entropy Values for Example Feature Vector Formation 

we use linear spline scaling functions and wavelets (TO = 2). The processing is shown in 

Figure 6.2.2. The pulse in this example is number 17 taken from the second Granny emitter 

set. This pulse is also part of the associated culled data set. This nomenclature is more 

thoroughly denned in the following section. For our purposes it sufficient at this point to 

understand this data is actual radar pulse data. 

We assume the sampled pulse is a sequence of approximation coefficients (co)associated 

with some function living in Vo which is denned by the scaling function and dilation factor. 

Since we have p = 3, there are p - 1 = 2 wavelets and sets of detail coefficients at each level. 

The left column of graphs in Figure 6.2.2 represent the successive sets of approximation 

coefficients for 4 levels of decomposition (ci,c2,c3,C4). To the right of each approximation 

coefficient graph are the two graphs of the corresponding detail coefficients. 

The entropy for each set of detail coefficients is given in Table 6.2.2. The values of 

the approximation coefficients shown in Figure 6.2.2 have been normalized for the entropy 

calculation and the CQ approximation coefficients (the actual sampled pulse data) has been 

normalized prior to performing the RRA decomposition. The feature vectors for the other 

types of processing (MRA and WP) are formed in a similar manner. 
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Figure 6.2   Illustration of RRA Processing for Feature Vector Formation with p = 3, q = 2, 
m = 2 and Actual Sampled Pulse Data 
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6.3   Data and Processing Description 

6.3.1 Radar Data. The data used for this application consists of sampled radar 

pulses of four emitters. For reference, the entire data set is called the "apples " and the 

emitters are labelled "golden," "granny," "ida," and "mac." For each emitter, there are three 

data sets and each radar pulse in the data set is represented by 300 samples. From data set, 

a subset has been set aside. This subset, which is called the "culled" data set, represents a 

portion of the sampled radar pulses which are considered "clean". For instance, these pulses 

all have values which did not exceed the dynamic range of the collection equipment so that 

no clipping is evident. Furthermore, the pulse transitions are clearly evident. These data 

points will be used to "train" the classifier in certain experiments since they are potentially 

the most representative of the specific emitter. The total number of data points is shown in 

Table 6.2. 

Data Set 
Emitter 1 2 3 

Golden 
Granny 
Ida 
Mac 

unculled culled unculled   culled unculled culled 
141 
141 
177 
196 

98 
113 
93 
167 

141          110 
141          115 
65            38 
50            30 

141 
141 
65 
157 

111 
125 
32 
89 

Table 6.2   Number of Sampled Radar Pulses per Class 

6.3.2 Wavepacket Decomposition. There are three basic types of processing which 

are used in this chapter: the RRA decomposition, the MRA decomposition, and the binary 

wavepackets decomposition. Wavepacket decompositions are considered in this research for 

comparison with the work of Devaney cited earlier. They require some explanation since 

both the RRA and MRA have been descibed in previous chapters. 

In simplest terms, a wavepacket decomposition can be though of as a recursive appli- 

cation of the MRA. For the dyadic case, the approximation coefficients CQ are processed into 

approximation coefficients C\ and detail coefficients d\.  The difference between the MRA 
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and the wavepacket decompostion is that for the MRA, only C\ is further decomposed, while 

for the wavepacket decomposition, both c\ and d\ are further decomposed. At each level, 

decomposition is performed on both the "approximation" and "detail" coeffcients. For ex- 

ample, in a two-level wavepacket decomposition, seven sets of coefficients are generated: Co, 

Coo; Coi) Q)00) Cooi) CoiO) and Con- A binary labelling scheme has been used. The original set 

of approximation coefficients can be reconstructed by considering the sets cooo> Cooi> CoiOj and 

con- In contrast, the MRA would require C2, cfoj and d\. The numbers of total coefficients 

in either case would be roughly equivalent. 

From a frequency standpoint, a wavepacket decomposition covers the spectrum with 

frequency bins whose widths are constant and therefore independent of the the center fre- 

quency of particular band. In contrast, the MRA covers the spectrum with frequency bins 

whose widths are proportional to the center frequency. The effect of a wavepacket decom- 

position is a partitioning of the spectrum which is in some sense similar to that of a discrete 

Fourier transform. One difference is that the wavepacket decomposition allows the flexibility 

to consider groups of frequency bins as a single bin (by dealing with coi instead of both coio 

and con, for example). More will be said on the wavepacket decomposition later. 

6.3.3 Feature Vector Construction. The feature vectors for the various decom- 

positions are constructed in roughly similar ways. The radar pulse is first normalized (Z2) 

and then decomposed via the RRA, MRA, or wavepacket (WP) analysis. For certain sets 

of decomposition coefficients, the entropy is calculated and the result becomes an entry in 

the corresponding feature vector. It should be noted at this point that the decomposition 

coefficients are normalized prior to calculating the entropy so that all levels of decomposition 

coefficients are treated equally. The length of the feature vectors in all three cases are deter- 

mined so they are roughly equivalent. This allows a more meaningful comparison between 

the decompositions. 

Feature vectors are used in one of two ways. The first way is for use in "training" the 

classifier. A set of feature vectors corresponding to a particular emitter are used to calculate 
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a mean and variance vector. These vectors are used to construct a Bayesian-like classifier 

whereby the distribution of the feature vectors belonging to a particular class is assumed 

to have a normal distribution characterized by the mean and variance vectors. The other 

use of the feature vectors is for use in classification. Once the mean and variance vectors 

have been calculated, a specific feature can be "compared" to the various distributions to 

determine which is the most likely class. 

6.3.4 Pulse Classification Experiments. As was roughly described above, a pulse 

is classified based on the comparison of its feature vector with the distributions of feature 

vectors associated with the various emitters. An explicit assumption in this process is that 

pulses from a specific emitter, or rather, the associated feature vectors, are normally dis- 

tributed. That is, the distibution is Gaussian and is parameterized entirely by the mean and 

variance. There are two primary reasons for this assumption. The first has to do with the 

Central Limit Theorem which states the distribution of an infinite sequence of functions of 

random variables is a normal distribution regardless of the distribution of the random vari- 

able. The second reason is more practical than theoretical. The sample mean and variance, 

used as estimates of the actual mean and variance, are easy to calculate. Thus, without 

knowledge of the distribution of the sampled radar data and the effect the various resolution 

analyses have on that distribution, the assumption of a normal distribution is warranted. 

For each of the apples there are three unculled data sets and each of these has an 

associated culled data set. Each classification experiment uses one or more of the three data 

sets to "train" the classifier as was described above. Then each of the radar pulses in the 

remaining data sets are compared to the distributions established by the training sets and 

assigned a class (golden, granny, ida, or mac) based on that result. As a measure of saliency, 

the training sets can also be classified. This gives a qualitative estimate of how well the 

feature vectors uniquely characterize a particular class of signals. 

The results of the various classification experiments are presented in confusion matrices. 

A confusion matrix shows the performance of the classifier by showing how the pulses were 

6-10 



classified versus the class they actually belong to. An example confusion matrix is shown 

below in Table 6.3. 

Golden   Granny   Ida    Mac 
Golden 133          1              7       0 
Granny 3             132          4       2 

Ida 3             14            143    17 
Mac 1             0              5       190 

Table 6.3   Example Confusion Matrix 

For example, the entry in the third column and second row is the number of the pulses 

in the second class (granny, in our case) which the classifier incorrectly assigned to the third 

class (ida). The sum of any row is the total number of pulses of a particular class used 

in the experiment and the distribution of values within a row gives an indication of how 

well the classifier performs on the class associated with that row. A perfect classifier would 

have a strictly diagonal matrix. The overall accuracy of the classifier (feature vectors and 

classifier) is the trace of the confusion matrix divided by the total number of pulses used in 

the experiment. 

6.4    Classification Results 

6.4.I Description. Each processing method (RRA, WP, and MRA) was used, each 

with various sets of parameters. For the RRA, the 3/2 dilation factor was used with two 

regularity factors (m = 2 and m = 4). For the RRA case, 5 levels of decomposition were 

performed and entropies calculated for the resulting 10 sets of detail coefficients. The 10 

entropy values were concatenated to form a feature vector. An entropy was not calculated 

for the final approximation coefficients. The number of decomposition levels was chosen to 

minimize the size of the resulting feature vectors and to correspond to a bandwidth coverage 

roughly equivalent to the WP processing. More will be said on this later. 

For the WP processing, Daubechies wavelets and scaling functions were used. In 

particular, the 12-tap filters (Db-6) and the 6-tap filters (Db-3) were used since they had 
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regularities which corresponded most closely with m = 4 and m = 2, respectively. In each 

case, 3 decomposition levels were calculated and entropies were calculated for each set of 

approximation and detail coefficients (15 entropies). As with the RRA case, the 15 entropy 

values were concatenated to form a feature vector. The number of decomposition levels was 

chosen to correspond to a particular bandwith coverage discussed below. 

In order to equate the RRA and WP processing in terms of information extraction, 

the equivalent bandwidth of the processing niters must be approximately equivalent. If 

we consider a starting point of unity bandwith and assume the coverage of a particular 

decomposition level is determined be the center point of the bandwidth of the final level 

of decomposition, the five levels of the RRA decomposition for p/q = 3/2 cover down to 

(2/3)5 = 0.13168 and the 3 levels of the WP decomposition covers to (1/2)3 = 0.125. Thus, 

although the resulting feature vectors have unequal lengths, the bandwidth coverages are 

roughly equivalent. It was mentioned above that the approximation coefficients associated 

with the final level of RRA decomposition were not included. For the p/q = 3/2 case, the 

coverage of this part of the processing is centered at 24/35 which is exactly the lower edge 

of the coverage of the detail spaces. The decision to do without these coefficients stems 

from this observation and a desire to use as few coefficients as possible to cover the same 

bandwidth. 

It is convenient at this point to adopt a nomenclature which will make it easier to 

refer to the various processing techniques and their associated parameters. For the RRA, 

the notation RRA(p, q, TO, I) will be used to mean RRA processing with dialation factor p/q, 

regularity m, and I levels of decomposition. For the wavepacket processing, the notation 

WP(Db6,l) will be used to mean an /-level wavepacket decomposition (in this example, 

using the 12-tap Daubechies scaling function and wavelet). The dilation factor 2 is implicit 

in the wavepacket processing to be consistent with Devaney. For the MRA, the notation 

MRA(type,p, I) is used to mean an /-level MRA decomposition using wavelets and scaling 

functions associated with type and dilation factor p. In both the MRA and RRA processing 
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schemes, the entropy of the final set of approximation coefficients was used in constructing 

the feature vector unless explicitly specified. 

6.4.2   Discussion of Results.      The results of classification processing is summarized 

in Tables 6.4 and 6.5. 

Case Train Test RRAm=4 RRAm=2 WPDb6 WPDb4 MRA 3,4,2 MRA 3,2,2 

1 123 123 0.8985 0.8901 0.8335 0.8335 0.7584 0.7841 

2 123 123c 0.9233 0.9153 0.8849 0.8956 0.7886 0.7975 

3 123c 123 0.8560 0.8837 0.7815 0.7770 0.7237 0.7873 

4 123c 123c 0.9224 0.9376 0.8796 0.8894 0.8037 0.8260 

5 12 12 0.9078 0.9040 0.8527 0.8565 0.7757 0.7899 

6 12 12c 0.9123 0.9188 0.8861 0.9084 0.7801 0.7932 

7 12 3 0.8849 0.8631 0.7996 0.7817 0.7242 0.7917 

8 12 3c 0.9440 0.9216 0.8627 0.8711 0.7787 0.8291 

9 12c 12 0.8622 0.9030 0.8099 0.8118 0.7567 0.8156 

10 12c 12c 0.9241 0.9476 0.8927 0.9097 0.8207 0.8390 

11 12c 3 0.8333 0.8274 0.7480 0.7222 0.7004 0.7698 

12 12c 3c 0.9216 0.9048 0.8739 0.8655 0.7843 0.8151 

13 13 13 0.8999 0.8921 0.8516 0.8447 0.7765 0.7808 

14 13 13c 0.9324 0.9203 0.9118 0.9034 0.8104 0.7911 

15 13 2 0.8992 0.8615 0.7935 0.7909 0.7154 0.7557 

16 13 2c 0.9044 0.8840 0.8532 0.8464 0.7474 0.7747 

17 13c 13 0.8447 0.8904 0.8050 0.7852 0.7343 0.7947 

18 13c 13c 0.9312 0.9457 0.9106 0.9022 0.8321 0.8418 

19 13c 2 0.8363 0.8589 0.7305 0.7506 0.6650 0.7582 

20 13c 2c 0.8874 0.8976 0.8294 0.8396 0.7406 0.7952 

21 23 23 0.8923 0.8824 0.8080 0.8002 0.7170 0.7647 

22 23 23c 0.9246 0.9185 0.8677 0.8677 0.7692 0.7954 

23 23 1 0.8947 0.8962 0.8092 0.8473 0.8198 0.7191 

24 23 lc 0.9087 0.9172 0.8195 0.8832 0.8280 0.6921 

25 23c 23 0.8446 0.8801 0.7403 0.7203 0.6837 0.7492 

26 23c 23c 0.9292 0.9385 0.8523 0.8385 0.7692 0.8000 

Table 6.4   Overall Classification Results 

The table contains the overall classification rate (the number of successful classifications 

divided by the total number of attempts). In terms of the confusion matrix, it is simply the 

trace divided by the sum of the column sums. 

The discussion of the results can be naturally divided into two areas: the feature 

saliency and classification accuracy. Feature saliency deals with the classifications where the 

training and test dat are identical. Hopefully, a classifier should perform well on the same 
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Case Train Test RRAm=4 RRAm=2 WPDb6 WPDb3 MRA 3,4,2 MRA 3,2,2 
27 23c 1 0.8443 0.8733 0.7557 0.7496 0.7481 0.7496 
28 23c lc 0.8981 0.9257 0.8429 0.8514 0.8174 0.8004 
29 1 1 0.9160 0.9130 0.8809 0.8794 0.8198 0.8046 
30 1 lc 0.9278 0.9278 0.9151 0.9257 0.8217 0.8068 
31 1 23 0.8868 0.8535 0.7980 0.7869 0.7214 0.7669 
32 1 23c 0.9231 0.8923 0.8754 0.8662 0.7692 0.7938 
33 lc 1 0.8519 0.9115 0.8534 0.8412 0.7756 0.8443 
34 lc lc 0.9342 0.9575 0.9321 0.9236 0.8705 0.8726 
35 lc 23 0.8257 0.8313 0.7625 0.7214 0.6848 0.7547 
36 lc 23c 0.9077 0.8954 0.8815 0.8308 0.7738 0.8169 
37 2 2 0.8967 0.8992 0.8262 0.8161 0.7229 0.7683 
38 2 2c 0.8976 0.9078 0.8703 0.8669 0.7440 0.7713 
39 2 13 0.8809 0.8887 0.7222 0.7368 0.7575 0.8067 
40 2 13c 0.9082 0.9251 0.7560 0.7995 0.7778 0.8225 
41 2c 2 0.8816 0.8791 0.8060 0.7733 0.7053 0.7708 
42 2c 2c 0.9113 0.9283 0.8874 0.8805 0.7611 0.7986 
43 2c 13 0.8352 0.8628 0.7282 0.6747 0.7187 0.7532 
44 2c 13c 0.8949 0.9372 0.8080 0.7935 0.7778 0.7947 
45 3 3 0.8909 0.8750 0.8075 0.8016 0.7282 0.7599 
46 3 3c 0.9412 0.9272 0.8992 0.8768 0.7871 0.7843 
47 3 12 0.8821 0.8650 0.8213 0.7928 0.7662 0.7300 
48 3 12c 0.9018 0.8874 0.8665 0.8364 0.7945 0.7186 
49 3c 3 0.8333 0.8631 0.7421 0.7242 0.6607 0.7560 
50 3c 3c 0.9468 0.9440 0.8683 0.8431 0.7759 0.8235 
51 3c 12 0.7966 0.8441 0.7262 0.7120 0.6635 0.7139 
52 3c 12c 0.8704 0.9005 0.8285 0.8024 0.7683 0.7683 

Table 6.5   Overall Classification Results (continued) 
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data which was used to train it. If this is not the case, it generally signifies that the features 

used to train the classifier are not salient. That is, the features do not provide "handles" to 

determine which class a particular test vector belongs to. Determining feature saliency also 

depends upon the particular classifier. 

Classification accuracy are associated with the test cases where the training set and 

test sets do not intersect. It is simply a measure of how well a classifer can do with a 

given feature set. It is representative of the results one would expect if the classifier was 

operationally fielded. 

6.4.2.I Entropy Vector Feature Saliency. For convenience, the classifications 

where the training and test sets are the same are sifted from Tables 6.4 and 6.5 and shown in 

Table 6.6. Comparing the RRA and wavepacket techniques independent of filter regularity, 

Case Train Test RRAm=4 RRAm=2 WPDb6 WPDb4 MRA 3,4,2 MEA 3,2,2 
1 123 123 0.8985 0.8901 0.8335 0.8335 0.7584 0.7841 
4 123c 123c 0.9224 0.9376 0.8796 0.8894 0.8037 0.8260 
5 12 12 0.9078 0.9040 0.8527 0.8565 0.7757 0.7899 
10 12c 12c 0.9241 0.9476 0.8927 0.9097 0.8207 0.8390 
13 13 13 0.8999 0.8921 0.8516 0.8447 0.7765 0.7808 
18 13c 13c 0.9312 0.9457 0.9106 0.9022 0.8321 0.8418 
21 23 23 0.8923 0.8824 0.8080 0.8002 0.7170 0.7647 
26 23c 23c 0.9292 0.9385 0.8523 0.8385 0.7692 0.8000 
29 1 1 0.9160 0.9130 0.8809 0.8794 0.8198 0.8046 
34 lc lc 0.9342 0.9575 0.9321 0.9236 0.8705 0.8726 
37 2 2 0.8967 0.8992 0.8262 0.8161 0.7229 0.7683 
42 2c 2c 0.9113 0.9283 0.8874 0.8805 0.7611 0.7986 
45 3 3 0.8909 0.8750 0.8075 0.8016 0.7282 0.7599 
50 3c 3c 0.9468 0.9440 0.8683 0.8431 0.7759 0.8235 

Table 6.6   Overall Saliency Results 

the RRA has equivalent or better performance in all of the 14 cases (100%). When comparing 

similar regularities, the RRA performed better in all of the 14 cases (100%) for the m = 4 

and "db6" filters. The RRA performed equivalently or better in all of the 14 cases (100%) 

for the m = 2 and "db3" filters as well. 
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Looking at Table 6.6, the overall classification rates for these saliency cases are generally 

at 89%. The conclusion is that although the RRA performs better than the wavepackets 

in terms of feature saliency, the margin of improvement is relatively small. While this 

statement may appear to trivialize any advantage the RRA has over wavepacket processing, 

the size of the feature vectors needs to be considered. The wavepacket entropy vector has 

15 elements compared to 10 for RRA. From a purely theoretical standpoint, one would 

expect better performance from the wavepacket feature vector simply because it has the 

potential to contain so much more information. But in this case, the relative equivalence of 

the performances supports a conclusion that the RRA feature vectors are significantly more 

salient than those from wavepacket processing. 

6.4-2.2 Classifier Accuracy. This part of the results focuses on the classifica- 

tion trials where the training set and test set are different. As was mentioned earlier, each 

data set has a culled subset which contains those pulses which are cleanly sampled with no 

aliasing or clipping. Both the unculled and culled data sets were used to train the classifier. 

Theoretically, training with culled data would let the classifier better adapt to a particular 

emmitter since the associated exemplars are "better." 

This theory does not hold in this case however. When comparing training with culled 

and unculled datasets on the same test sets, it is clear that, in fact, using culled data to train 

the classifier generally hurts the overall accuracy. For the 26 pairs of classifications, training 

with unculled data resulted in significantly better overall results as shown in Table 6.7. 

RRAm=4 Db6WP RRAm=2 Db3WP 
Ratio 21/26 16/26 14/26 24/26 
Percentage 80.77% 61.54% 53.85% 92.31%   . 

Table 6.7   Percentage of Classifications where Unculled Training Data Resulted in Greater 
Overall Accuracy 

While it is difficult to determine the exact cause of this result, one speculation might 

be that forming feature vectors via entropy calculation nullifies any potential advantage 
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from training with clean data. That is, by "cleaning up" the data, information useful to 

this particular classification scheme is lost. Since the culling criteria is unknown, it is not 

clear what type of classification scheme could benefit from culling the data, but for this 

scheme, there is a general penalty for using culled data. With this result in mind, only the 

classifications with unculled training data will be discussed in the remainder of this section. 

For completeness, Tables 6.4 and 6.5 contains all the classifications however. 

The subset of Table 6.4 and 6.5 for which training was performed on unculled data is 

shown in Table 6.8.  The table shows that in classifications where training was performed 

Case Train Test RRAm=4 RRAm=2 WPDb6 WPDb4 MRA 3,4,2 MRA 3,2,2 
1 123 123 0.8985 0.8901 0.8335 0.8335 0.7584 0.7841 
2 123 123c 0.9233 0.9153 0.8849 0.8956 0.7886 0.7975 
5 12 12 0.9078 0.9040 0.8527 0.8565 0.7757 0.7899 
6 12 12c 0.9123 0.9188 0.8861 0.9084 0.7801 0.7932 
7 12 3 0.8849 0.8631 0.7996 0.7817 0.7242 0.7917 
8 12 3c 0.9440 0.9216 0.8627 0.8711 0.7787 0.8291 
13 13 13 0.8999 0.8921 0.8516 0.8447 0.7765 0.7808 
14 13 13c 0.9324 0.9203 0.9118 0.9034 0.8104 0.7911 
15 13 2 0.8992 0.8615 0.7935 0.7909 0.7154 0.7557 
16 13 2c 0.9044 0.8840 0.8532 0.8464 0.7474 0.7747 
21 23 23 0.8923 0.8824 0.8080 0.8002 0.7170 0.7647 
22 23 23c 0.9246 0.9185 0.8677 0.8677 0.7692 0.7954 
23 23 1 0.8947 0.8962 0.8092 0.8473 0.8198 0.7191 
24 23 lc 0.9087 0.9172 0.8195 0.8832 0.8280 0.6921 
29 1 1 0.9160 0.9130 0.8809 0.8794 0.8198 0.8046 
30 1 lc 0.9278 0.9278 0.9151 0.9257 0.8217 0.8068 
31 1 23 0.8868 0.8535 0.7980 0.7869 0.7214 0.7669 
32 1 23c 0.9231 0.8923 0.8754 0.8662 0.7692 0.7938 
37 2 2 0.8967 0.8992 0.8262 0.8161 0.7229 0.7683 
38 2 2c 0.8976 0.9078 0.8703 0.8669 0.7440 0.7713 
39 2 13 0.8809 0.8887 0.7222 0.7368 0.7575 0.8067 
40 2 13c 0.9082 0.9251 0.7560 0.7995 0.7778 0.8225 
45 3 3 0.8909 0.8750 0.8075 0.8016 0.7282 0.7599 
46 3 3c 0.9412 0.9272 0.8992 0.8768 0.7871 0.7843 
47 3 12 0.8821 0.8650 0.8213 0.7928 0.7662 0.7300 
48 3 12c 0.9018 0.8874 0.8665 0.8364 0.7945 0.7186 

Table 6.8   Overall Classification Results for Cases with Unculled Training Data Sets 

with unculled data, the RRA out-performed wavepacket processing by a substantial margin. 

Of the 26 classifications, 24 (92.31%) were associated with one of the two RRA processing 

schemes. The actual breakout of the numbers is shown in Table 6.9. 
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6.5   Modified Wavepacket Processing 

6.5.1 Introduction. As was mentioned in the introduction to this chapter, a radar 

pulse can be characterized by amplitude and frequency videos. Prom a strictly Fourier point 

of view, the most significant aspect of a radar pulse is the frequency chirp or carrier frequency. 

One might hope to gain better classification accuracy by focusing on these frequencies. 

Unfortunately, the wavepacket processing described earlier in this chapter subdivide the 

frequency spectrum in a symetric, tree-structured fashion. 

However, an advantage wavepacket processing has over the RRA and MRA is the ease 

with which different frequency bands can be emphsized. Consider Figure 6.3 which shows a 

binary-tree representation of the frequency division which occurs during a dyadic wavepackets 

decomposition. The wavepacket processing earlier in this chapter Used coefficients of 3 levels 

16 

24 

12 20 28 

10 14  I  18  I  22  I  26  I  10" 

1 13 I S I 7 I 9 I 11 I 13 I 15 I 17 I 19 I 21 I 23 I 25 I 27 I 29 I 31 

Figure 6.3   Binary Tree Representation of Dyadic Wavepacket Processing 

to form the feature vector.  If each node in Figure 6.3 represents a set of coefficients and 

an entry in the feature vector via the entropy calculation, the earlier feature vectors were 

6-18 



formed using nodes in the top three levels. In Figure 6.3, this corresponds to even-numbered 

nodes for a total of 15 nodes. 

6.5.2   Description of Modified WP Feature Vectors. The frequency video for a 

representative pulse is focused mainly in the frequency bins associated with nodes 13 through 

19. This suggests a wavepacket feature vector which emphasizes these nodes may offer 

better classification performance. To test this hypothesis, classification tests using a modified 

wavepacket feature vector were performed. 

In this second set of classifications, feature vectors are constructed according to Fig- 

ure 6.4 below. This new feature vector has 13 entries, 2 less than the symetric WP decom- 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 
Node 16 8 12 10 14 13 15 24 20 18 17 19 22 

Figure 6.4   Modified Feature Vector Diagram 

position earlier. It de-emphasizes the lower frequencies (the nodes attached below node 8) 

in favor of the mid to high frequencies bands which are associated with the nodes attached 

below node 20. With the inclusion of information in nodes 17, 19, 21, and 23, note that this 

decomposition is also carried one level lower than the symetric decomposition earlier in this 

chapter. For comparision with the earlier wavepacket results, both the Daubechies 6-tap and 

12-tap filters (db3 and db6) were used. 

6.5.3 Classification Results with Modified Wavepacket Feature Vectors. Despite 

emphasizing the frequency video, the classification results using the modified WP feature 

vectors were only remarkable in that they showed no significant improvement over the sy- 

metric WP feature vectors. The overall results are tabulated in Table 6.10. In fact, when 

comparing the results in Table 6.10 with those in Tables 6.4 and 6.5, the symetric feature 

vectors outperform the modified feature vectors with no exceptions. This result is not intu- 

itive and suggests the salient features generated from the processing are not caused by the 

frequency video, which might otherwise be considered a prominent feature. 
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6.6   Summary 

In this chapter, the RRA was used to aid in the classification of radar pulses in a 

specific emitter identification problem. The RRA was compared to a previously published 

wavepacket entropy technique and was shown to provide significantly better overall results. 

The "sliding" redundancy of the RRA allows for more salient features by nearly a four to 

one margin compared to the "subdivision" redundancy of the wavepackets. In terms of 

accuracy, the results of this chapter indicate that in practical applications of the classifier 

the RRA-type processing would out-perform the MRA-based wavepackets processing. 

While RRA-based processing performed better than wavepackets processing, the re- 

sults were dependent upon the regularity of the filters used for the processing. In general, 

the m = 2 (linear) and m = 4 (cubic) RRA techniques competed for the best performance. 

This would indicate that the overall results are dependent upon the regularity of the filters 

and may have something to do with matching the regularity of a particular radar's pulse. 

Further studies are needed to determine the extent of this observation. One suggestion would 

be to try the RRA with other regularities. 

The hypothesis that the RRA would compare favorably to the MRA (and its deriva- 

tives) in feature extraction situations is based on the observation that an orthogonal decom- 

position allows "gaps" in the frequency coverage. That is not to say there are frequencies 

which are not covered by an MRA. However, certain frequencies will be covered by two 

adjacent bands equally. Thus the full impact of these frequencies will be spread among two 

sets of decomposition coefficients. 
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Process RRAm=4 Db6WP RRAm=2 Db3WP 
Ratio 19.5/26 0/26 6.5/26 0/26 
Percentage 75% 0% 25% 0% 

Table 6.9   Percentages of Unculled Trained Classifications by Best Performing Technique 

Case Train Test WPDb6 WPDb3 Case Train Test WPDb6 WPDb3 
1 123 123 0.7384 0.6947 27 23c 1 0.6840 0.6672 
2 123 123 0.7690 0.7386 28 23c lc 0.7580 0.7686 
3 123c 123 0.7159 0.6902 29 1 1 0.7802 0.7359 
4 123c 123 0.7814 0.7984 30 1 lc 0.7813 0.7643 
5 12 12 0.7519 0.7224 31 1 23 0.6837 0.6382 
6 12 12c 0.7618 0.7565 32 1 23c 0.7354 0.6969 
7 12 3 0.7024 0.6766 33 lc 1 0.7634 0.7282 
8 12 3c 0.7703 0.7339 34 lc lc 0.8068 0.8195 
9 12c 12 0.7500 0.7129 35 lc 23 0.6737 0.6193 
10 12c 12c 0.7984 0.8024 36 lc 23c 0.7462 0.7185 
11 12c 3 0.6806 0.6409 37 2 2 0.7632 0.7128 
12 12c 3c 0.7759 0.7619 38 2 2c 0.7747 0.7406 
13 13 13 0.7343 0.6937 39 2 13 0.6903 0.6928 
14 13 13c 0.7693 0.7476 40 2 13c 0.7077 0.7403 
15 13 2 0.7305 0.6675 41 2c 2 0.7280 0.6977 
16 13 2c 0.7611 0.7065 42 2c 2c 0.7816 0.7952 
17 13c 13 0.7170 0.6842 43 2c 13 0.6687 0.6324 
18 13c 13c 0.7959 0.7995 44 2c 13c 0.7126 0.7331 
19 13c 2 0.7003 0.6549 45 3 3 0.7242 0.6528 
20 13c 2c 0.7577 0.7406 46 3 3c 0.8067 0.7563 
21 23 23 0.7436 0.6792 47 3 12 0.7319 0.6863 
22 23 23c 0.7923 0.7477 48 3 12c 0.7539 0.7291 
23 23 1 0.7359 0.7099 49 3c 3 0.6786 0.6528 
24 23 lc 0.7431 0.7431 50 3c 3c 0.7815 0.7759 
25 23c 23 0.6926 0.6681 51 3c 12 0.6540 0.6483 
26 23c 23c 0.7677 0.7785 52 3c 12c 0.7225 0.7474 

Table 6.10   Overall Classification Results Using Modified WP Feature Vectors 
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VII.   Conclusion 

7.1 Introduction 

This chapter concludes the dissertation. The first section contains a summary of the 

major accomplishments. It also compares these accomplishments with the research goals 

which were set at the outset. These goals were presented in Chapter I. 

This research, like any theoretical research, has raised questions beyond those orig- 

inally envisioned. The second section deals with some of those questions in the form of 

recommendations for additional research. While these recommendations are related to the 

issues raised in the research, they are either beyond the scope of the research or deal with a 

refinement of some result which was not pursued. 

The final section draws some conclusions from the research in the context of the larger 

mathematical and engineering environments. Connections are made to several other research 

areas and the significance of the results of this dissertation are stated. 

7.2 Summary and Evaluation of Objectives 

The organization of this research has been focused on answering several fundamental 

questions which were identified at the outset of the work. The RRA as presented and 

described in this document was crudely introduced in a previous work[l]. That introduction 

actually posed more questions than it answered although it did set the stage for this larger 

and more complete treatment of the subject. 

Chapter II contained the theoretical foundations for the RRA. The nomenclature and 

structure of the RRA is based on the integer-dilation MRA and it is presented in that context. 

While the wavelets for the MRA form an orthonormal basis for Z<2(R), the wavelets associated 

with the RRA do not. Furthermore, it is not clear if they form a frame for 1*2 (R). This is 

a question which is not answered until a later chapter. The conditions on the RRA scaling 

functions and wavelets required for perfect reconstruction are the most significant point of 
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this first chapter. For perfect reconstruction, it was shown that the scaling function must 

satisfy a dual system two-scale equation based on two relatively prime positive integers. This 

was required so that the primed approximation space VI was a subset of the higher-resolution 

approximation spaces Vk-i and Vk simultaneously. 

This requirement on the scaling function for perfect reconstruction is a segue to Chap- 

ter III where the existence of compactly supported scaling functions satisfying the dual two- 

scale equations is investigated. Here, the implications of that requirement are analyzed. It is 

shown through a series of Lemmas and Theorems that the only orthonormal compactly sup- 

ported scaling functions are the well-known characteristic functions which give rise to Haar 

wavelets. As a related result, it is shown that even when the orthonormality requirement 

is relaxed, the only functions which simultaneously satisfy the dual two-scale equations are 

ß-splines or their derivatives. The roots of all the characteristic two-scale expression must 

lie on the unit circle. 

Having determined the scaling functions which are allow perfect reconstruction are 

spline-based, the next question that arises is how to calculate (numerically or symbolically) 

the corresponding wavelets. The approach taken in Chapter IV is to cast the problem as 

determining a set of vectors which span the nullspace of a finite approximation projection 

which is determined by the scaling function. This set of nullspace vectors are then related to 

nullspace of the larger, infinite approximation projection. Through an isomorphism between 

this nullspace and the detail space of the associated MRA, it is proven these nullspace vectors 

can be transformed into the desired orthonormal spline wavelets. 

Chapter V deals with the concept of frames and the question of whether the RRA 

wavelets form a frame for Z^R). The problem is one of determining how redundant the 

wavelets are in representing an arbitrary element in L2(M) and how stable that representa- 

tion is. A stable representation is one where closeness between two sets of detail coefficients 

translates into some degree of closeness between the functions which generated the coeffi- 

cients. It is shown in this chapter that the RRA wavelets do indeed form a frame for L<i{ 
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and that the lower frame bound is one and the upper frame bound is a function of the 

regularity and dilation factor. 

Chapter VI presents an application of the RRA to a real-world problem: specific 

emitter identification. The RRA is compared to other techniques such as wavepacket and 

MRA decompositions with respect to the ability to construct salient feature vectors from a 

sampled radar pulse. These features are fed into a classifer and the results were compared. 

It was determined the RRA-formed feature vectors resulted in classifications which were 

significantly more accurate than either the wavepackets or MRA. The overlapping structure 

of the RRA feature vector caused features which were more salient than the ultra-redundant 

wavepacket feature vectors, even when the wavepacket feature vectors were contracted in 

such a way as to emphasize the (apparent) significant features such as frequency video. 

7.3   Recommendations for Future Work 

As with any research project, this dissertation raises additional questions which are 

out of the scope of the original effort. These questions and their associated analysis become 

recommendations for further research and are the subject of this section. The discussion 

deals with significant issues which became apparent during the course of the research but is 

not meant to be an exhaustive list since other issues will likely occur to the reader. This 

section also discusses some issues with the research itself in terms of how the analysis leading 

to certain results could be refined. 

The characterization of compactly supported scaling functions yielding perfect recon- 

struction in the RRA is based upon a proof which deals with the zero locations of the 

corresponding approximation filters. The proof is somewhat inelegant in that it brute forces 

the conclusions about where the roots can lie by process of elimination. A recommendation 

in this area would be to research ways in which that part of the proof could be made simple 

and straight-forward. This recommendation falls in the category of research refinement. 

One of the first questions which arose during the course of the research is the require- 

ment for scaling functions and wavelets which lead to perfect reconstruction in the RRA. The 
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research has demonstrated the f?-splines are the only family of functions in this class. If one 

has no interest in synthesis, then perhaps the analysis can be simplified by using wavelets 

and scaling functions which do not satisfy the dual dilation equation system. After all, the 

application presented in Chapter VI does not depend upon perfect reconstruction, nor does 

it depend upon the wavelets forming a frame for L2(R). Thus, the question of necessity for 

perfect reconstruction in some applications is open. Aside from the elegance of the theory, 

perfect reconstruction seems useful only in those applications where analysis and synthe- 

sis are both present. Thus, research may be warranted in areas of biorthogonal wavelets 

and scaling functions. Compactly supported biorthogonal wavelets and scaling functions are 

certainly possible. 

The orthonormalization technique for constructing the final scaling functions and 

wavelets results in functions which do not have compact support (though they have ex- 

ponential decay). The corresponding approximation and detail filters are not FIR which 

complicates the numerical implementation of the various projections. Currently, the filters 

are truncated so that their values are identically zero after some finite extent. The decay on 

the filters allow control of the resulting errors, but there is still a tradeoff between error and 

filter length. More detailed analysis should be performed to understand this trade space. 

There are two potential ways to deal with this situation. The first is to observe that 

the infinite extent of the filters may give rise to a pole-zero representation. That is, the 

filters may be expressed as a ratio of trigonometric polynomials which migh yield a fast 

implementation as a finite difference equation. The non-causality of the filters would have 

to be dealt with however. 

The second idea is to allow for bi-orthogonal scaling functions and wavelets. With 

bi-orthogonal functions, the analyzing and synthesizing wavelets (and scaling functions) are 

duals of one another and are generally not translational orthogonal. This allows some free- 

dom in designing these functions for specific criteria. For example, the analyzing functions 

can be designed with compact support while the synthesizing functions are infinitely sup- 
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ported.   Alternatively, the analyzing functions can be designed with infinite support but 

satisfying specific bandwidth criteria. 

With respect to the specific emitter identification problem, the application of the RRA 

is simplistic in the sense that it does not rely on the perfect reconstruction property of the B- 

splines in the context of the RRA. The use of a Gaussian classifier is also simplistic and may 

not be the most appropriate type to use in this regard. For instance, the covariance matrix 

used in the classifier is assumed to be diagonal since the theoretical correlation between 

successive detail coefficient sets is not apparent. More research should be done to determine 

a model with greater fidelity in this regard. 

7.4    Conclusions 

This dissertation provides the theoretical framework for all multiresolution analyses 

with rational dilation factors. While non-integer dilation factors lead to resolution analyses 

in which the successive approximation spaces are not embedded, this research has shown the 

embedded analyses with integer dilation factors are a subset of this larger analysis, albeit 

with special nice properties. 

In the context of the discrete-time and digital signal processing realm, the RRA is 

recognized to contain the classic rational sampling rate change where the lowpass filter is 

intrinsicly defined in terms of the scaling function and dilation factor. This connection is 

satisfying in the sense that it affirms the belief that a significant technical accomplishment has 

many manifestations. This is similar to Mallat's observation that many people were doing 

the same thing in area of resolution analyses, each with there own different vernacular. 

They might have realized their similarity had there areas of research ever intersected; an 

often unlikely occurrence. 

As a final word to this document, the state of the art in resolution analyses has been 

expanded by this dissertation. Certain results such as the theorems dealing with the dual 

dilated polynomials are general enough to transcend their limited application to the devel- 
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opment of RRA theory.   They are applicable to a wider audience than those focusing on 

wavelets and multiresolution analysis. 
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Appendix A.   Supporting Lemmas 

Lemma A.l Let p,q 6 N with (p, q) = l. The map p : Zg x Zp —► Zpq defined by 

p(l, k) = (Ip + kq) mod pq. 

is an isomorphism. 

Proof. We want to show p is a bijective mapping. It is sufficient to show p is injective 

(one-to-one) since the range and domain of the map have the same finite cardinality. Thus 

injective will imply surjective (onto). We need to show: 

p(h, fa) = p(l2, k2) =>h = h, fa = fa. 

Suppose p(li,fa) = p(l2, fa). Then 

(lip + faq) mod pq = (l2p + faq) mod pq =>• (lxp + faq) mod pq - (l2p + faq) mod pq = 0 

=*■ i(hp + faq) - {hP + faq)) mod pq = 0 

=*• (ZoP +'fco<?) mod P9 = ° 

where IQ = l\ — l2 and fa = fa — fa. Continuing: 

(l0p + faq) mod pq = 0 =>■ Z0P + &o9 = npq,     n G Z 

=► Z0 € gZ and fc0 e pZ. 

This last implication comes from the observation: 

ap + bq = npq => 
ap/q = np — be 

bq/p = nq — a € 
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since p and q are relatively prime. This justifies the last step in the line of reasoning above. 

The logical conclusion is that 

li = I2 and k\ = hi 

which comes from the fact |Z0| < q and \k0\ < p so that lo € qZ implies l0 = 0 or h — I2 = 0 

and similarly for k\ — k2. This shows that p is an invertible map between Zp x Zg and Zpq 

so that 

{(lp + kq) mod pq}iezqMZp = ZPQ- 

which we set out to prove 

Lemma A.2 Define the max operatorMN :l —*l by 

(MNx)(n) = max{x(n + j)}jezN. 

Ifxe V, then y = MNx G lp as well where 1 < p < 00. 

Proof.   Let x and p be fixed arbitrarily. We need to show \\y\\ < 00. Consider the sequence 

z defined by 

z(n) = x([n/N\)    neZ. 

Clearly \\y\\ < \\z\\ = iV1/p||a;|| < 00, which holds for all p such that 1 < p < 00. 
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Appendix B.   Description of MATLAB Processing with Sequence Data 

Structures 

To facilitate the manipulation of sequences throughout this research, a sequence data 

structure was developed. The sequence data structure provides an explicit reference to the 

zeroth position in a vector. MATLAB handles vectors, specifically row vectors, simply as an 

unindex series of numbers. In the MATLAB indexing scheme, the first element of a vector is 

indexed as 1, the second as 2, and so on. Thus, prepending a zero to the sequence effectively 

shifts it one index to the right. The need for this data structure becomes apparent when 

considering the processing involved with downsampling a vector. Without a zero reference, 

downsampling cannot be accomplished. 

The sequence data structure solves this problem by fixing the first position of a se- 

quence to contain the index of the zeroth position of the remaining data. This is best 

illustrated by example. Suppose the following symetric sequence is centered at the ori- 

gin: x = [1 2 3 2 1]. To represent its orientation, the corresponding sequence would be 

sq_x = [312321]. The "sq_" prefix is used throughout the processing to indicate an 

instance of a sequence data type or a subroutine or function which operates on sequence 

data types. 

The remainder of this section is to describe some of the functions and subroutines which 

are used on sequence data types. For the most part, the functionality of these routines can 

be inferred from their names with appropriate modifications for the sequence arguments. 

The following table provides a list of squence functions and a brief description of their 

functionality. The functions are listed in their entirety on the following pages. 
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Table B.l    Summary of Sequence Processing Functions 

Sequence Function Description 
sq_absfft.m Returns the pointwise modulus-squared of the data 

portion of the argument sequence. 
sq.add.m Returns the index-aligned pointwise sum of two se- 

quences. 
sq_ai.m A simple routine that returns the values of a sequence 

around the zero point along with the corresponding 
indices 

sq-conv.m Returns the discrete convolution of two sequences. 
sq_conv2.m Returns the discrete convolution of a matrix of se- 

quences with a fixed sequence: row-wise convolution 
with index alignment. 

sq_corr.m Returns the discrete correlation of two argument se- 
quences. 

sq_corr2.m Returns the discrete correlation of a matrix of se- 
quences with a fixed sequence: row-wise correlation 
with index alignment. 

sq_cut.m Returns a the argument sequence truncated about the 
zero point. 

sq.downs.m Downsamples the argument sequence. 
sq-fft.m Performs the FFT on the data portion of a sequence 

with proper phase correction to account for the zero 
point. 

sqjflip.m Returns the argument sequence flipped about its zero 
point. 

sq_mult.m Multiplies the argument sequence s by the scalar; the 
zero point is unchanged. 

sq_norm.m Returns the p-norm of a sequence; p is passed as an 
argument. 

sq_plot.m A simple routine which plots a sequence with proper 
zero alignment. 

sq_plot_s.m A modification of the routine above which allows the 
plotting range to be scaled. 

sq-stem.m A simple routine which plots a sequence using the 
"stem" style. 

sq-strip.m Described above. 
sq.sub.rn Returns the difference between two argument se- 

quences. 
sq-thresh.m Returns a truncated version of the argument sequence 

where the truncation is determined by an argument 
threshold. 

sq_ups.m Returns an upsampled version of the argument se- 
quence. 
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Table B.2   Listing of sq_absfft .m 

function Sq=sq_absfft(sq,N); 
[z,s]=sq_strip(sq); 
if nargin < 2, 

N=length(s); 
end 

Sq=absfft(s,N); 

Table B.3   Listing of sq_add.m 

function x=sq_add(a,b) 
'/, Usage: x=sq_add(a,b). Adds two sequences pointwise. Aligns the 
'/, zeropoints for correct values and assumes zeros for points which 
*/, don't overlap. 
*/. 
[az,as]=sq_strip(a); 
[bz,bs]=sq_strip(b); 

*/. 
'/, Find the proper length of the resulting sequence 
xz=max(az,bz); 
la=length(as)-az;lb=length(bs)-bz; 
xs=zeros(i,xz+max(la,lb)); 
xs((xz-az+l):xz+la)=as; 
xs((xz-bz+l):xz+lb)=xs((xz-bz+i):xz+lb)+bs; 
*/. 
x=[xz,xs]; 

Table B.4   Listing of sq_ai .m 

function f=sq_ai(x) 
*/. 
[xz,xs]=sq_strip(x); 
a=[[(1:length(xs))-xz]',xs(:)] ; 
f=a(find(abs(a(:,1))<11),:) ; 
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Table B.5   Listing of sq.conv.m 

function x=sq_conv(a,b) 

[az,as]=sq_strip(a); 
[bz,bs]=sq_strip(b); 

'/. 
xs=conv(as,bs); 
xz=az+bz-l; 
•/. 
x=[xz,xs]; 

Table B.6   Listing of sq_conv2 .m 

*/, function x=sq_conv2(a,b) 
'/. 
%  This function takes a matrix sequence a and convolves it 
'/, with a scalar sequence b: 'a' is a matrix whose rows are 
'/, sequences; 'b' is a standard row sequence. 
function x=sq_conv2(a,b) 
*/. 
[az,as]=sq_strip(a); 
[bz,bs]=sq_strip(b); 

'/. 
xs=conv2(bs,as); 
xz=az+bz-l; 
'/. 
x=[xz,xs]; 

Table B.7   Listing of sq_corr.m 

function x=sq_corr(a,b) 
'/. 
[az,as]=sq_strip(a); 
[bz,bs]=sq_strip(b); 

*/. 
n=length(as); 
i=n:-l:l; 
xs=conv(as(i),bs); 
xz=n-az+bz; 
*/. 
x=[xz,xs]; 
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Table B.8   Listing of sq_corr2 .m 

function x=sq_corr2(a,b) 
y, function x=sq_corr2(a,b) 
*/. 
'/, This function takes a matrix sequence a and correlates it with a 
'/, scalar sequence b: 'a' is a matrix whose rows are sequences, 'b' is 
*/. a standard row sequence. 
'/. 
[az,as]=sq_strip(a);   [bz,bs]=sq_strip(b); 
'/. 
[m,n]=size(as); 
xs=xcorr2(bs,as); 
xz=n-az+bz; 
•/. 
x=[xz,xs]; 

Table B.9 Listing of sq.cut .m 

function xc=sq_cut(x,N); 
'/, Usage: xc=sq_cut (x, N) ; 
'/, This function takes a sequence x, truncates the data sequence 
*/, symmetrically about the zero point, and returns a length N sequence. 
[xz,xs]=sq_strip(x); 
xcz=ceil(N/2); 
o=l:N; 
xcs=xs(xz-xcz+o); 
xc=[xcz,xcs]; 
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Table B.10   Listing of sq_downs .m 

function xd=sq_downs(x,p) 
*/, Usage: xd=sq_downs(x,p) 

•/. 
•/, x is the sequence row vector; first element is zeropoint 
*/. p is the downsample factor 
'/. 
*/, BUG: for matrix sequences, the downsample assumes all row sequences 
'/, have the same zero point. 

'/. 
[z,s]=sq_strip(x);    '/.separate the data 

*/. 
[m,n]=size(s); 

'/. 
o=rem(z-i,p)+i; 
'/. 
xds=s(: ,o:p:n);    '/, <— potential problem here 
xdz=ceil(z/p); 
'/. 
xd=[xdz,xds]; 

Table B.ll   Listing of sq_f f t .m 

function X=sq_fft(x,N) 
'/. 
[xz,xs]=sq_strip(x); 
if nargin <2 N=length(xs)jend 
*/. 
xp=zeros([i,N]);xp(l:length(xs))=xs; 
xp=rshift(xp,xz-l); 
Xs=fft(xp); 
Xz=l; 
X=[Xz,Xs]; 

Table B.12   Listing of sq_flip.m 

function f=sq_flip(x) 
*/. 
[z,s]=sq_strip(x); 
n=length(s); 
fs=fliplr(s); 
fz=n-z+l; 
f=[fz,fs]; 
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Table B.13   Listing of sq_mult .m 

function x=sq_mult(a,s) 
*/, Usage: x=sq_mult(a,s). Multiplies the sequence s by the scalar a. 
'/. 
Csz,ss]=sq_strip(s); 

'/. 
x=[sz,a*ss]; 

Table B.14   Listing of sq_norm.m 

function n=sq_norm(sq_x,p) 
'/, Usage: n = sq_norm(sq_x,p) 
'/, This function returns the p-norm of the sequence. 
'/, Without the second argument, p=2 by default. 
*/. 
'/, Modified to sort the array before calculating the norm 
if nargin < 2 , p=2; end 
[xz,xs]=sq_strip(sq_x); 
n=norm(sort(xs),p); 

Table B.15   Listing of sq.plot .m 

function f=sq_plot(x,r,c) 
•/. 
[xz,xs]=sq_strip(x); 
range=[1-xz:length(xs)-xz]; 
xM=ceil(max(xs)); 
xm=floor(min(xs)); 
if nargin <3, c='y'; end 
plot(range,xs,c); 
if nargin>=2,axis([-r,r,xm,xM]);end 
return 
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Table B.16   Listing of sq_plot_s .m 

function f=sq_plot_s(x,s,r,c) 
'/, A modification of sq.plot to allow a scale parameter 
'/, in the plotting range. 
[xz,xs]=sq_strip00; 
range=[1-xz:length(xs)-xz]/s; 
xM=ceil(max(xs)); 
xm=floor(min(xs)); 
if nargin <4, c='y'; end 
plot(range,xs,c); 
if nargin>=3,axis([-r,r,xm,xM]);end 
return 

Table B.17   Listing of sq_stem.m 

function d=sq_stem(x,linetype,dottype) 
'/. 
[z,s]=sq_strip(x); 
y=[1:length(s)]-zp; 
stem(x,y,linetype,dottype); 

Table B.18   Listing of sq_strip. m 

function [z,s]=sq_strip(sq_x) 
*/. Usage: [z,s]=sq_strip(sq_x) 
'/, This function separates the data from the zero point 
'/. 
'/, modified 6/18/96 to handle matrix sequences 
[m,n]=size(sq_x); 
z=sq_x(:,l); 
s=sq_x(:,2:n); 
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Table B. 19   Listing of sq_sub. m 

function x=sq_sub(a,b) 
'/, Usage: x=sq_sub(a,b). Subtracts 'b' from 'a' pointwise. Aligns 
'/. the zeropoints for correct values and assumes zeros for points which 
X don't overlap. 

X 
[az,as]=sq_strip(a); 
[bz,bs]=sq_strip(b); 

X 
X Find the proper length of the resulting sequence 
xz=max(az,bz); 
la=length(as)-az;lb=length(bs)-bz; 
xs=zeros(l,xz+max(la,lb)); 
xs((xz-az+l):xz+la)=as; 
xs((xz-bz+l):xz+lb)=xs((xz-bz+l):xz+lb)-bs; 

X 
x=[xz,xs]; 

Table B.20   Listing of sq_thresh.m 

function t = sq_thresh(s,threshold) 
X function t = sq_thresh(s,threshold) 
X 
X This function takes a sequence retains the "middle" (contiguous) 
X portion which has element magnitudes above the threshold. 

X 
z=s(l); 
if nargin < 2, threshold = eps; end 
1=2; 

while (abs(s(l))< threshold)*(K=z), 1=1+1; end 
h=length(s); 

while (abs(s(h))< threshold)*(h>(z+1)), h=h-l; end 

X 
t=[s(l)-l+2, s(l:h)]; 
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Table B.21   Listing of sq.ups .m 

function xu=sq_ups(x,p) 
*/. 
[z,s]=sq_strip(x); 
*/n=length(s); 
[m,n]=size(s); 
*/,xus=zeros(l,p*(n-l)+l);xus(p*CO:n-l]+l)=s; 
xus=zeros(m,p*(n-l)+l);xus(:,p*[0:n-l]+l)=s; 
xuz=p*(z-l)+l; 
*/. 
xu=[xuz,xus]; 
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Appendix C.   The Orthonormalization of Semiorthogonal B-Spline Scaling 

and Wavelet Filters 

This Appendix contains various MATLAB code listings for the generation of orthonor- 

mal spline scaling filters which are used throughout this dissertation. There are several 

versions of the basic code, each designed for a specific input and to yield a specific output. 

The mainstay code is on_filter.m which is listed at the end of this section. This 

routine performs Daubechies' "orthonormalization trick" on a vector of numbers to yield 

a set of filter coefficients which correspond to the associated orthonormal scaling function 

or wavelet. The equation which is implemented in the following code was presented in 

Chapter I. Note that the code does no error checking with respect to division by zero. 

Hence, the code will fail violently if the discrete Fourier spectrum of the argument sequence 

has a zero. The spectrum not having a zero in [0, 2TT) is a condition for orthonormalization 

which was discussed earlier. 

The code takes several arguments: the dilation factor p, the spline degree m, the total 

number filter coefficients to return N, and an optional argument which allows the user to 

specify the initial phase on the input sequence. This optional argument is used in some cases 

where the first element of the sequence to orthonormalized is not indexed to 0. 

Example C.l To calculate the orthonormal B-spline scaling function associated with a p 

dilation and m regularity, the following code would be used to generate a 1024 tap sequence: 

matlab> p=3; m=2; hp=[l 2 3 2 1]; 

matlab> filter=on_filter(hp,p,m,1024); 

The values for hp are determined by the m-fold convolution of the p-length regularity se- 

quence. For calculating wavelets, the implementation is nearly identical except that the 

semi-orthogonal wavelet sequence is substituted for hp. For instance, to orthonormalize 

semi-orthogonal wavelet sequence, one might use the following: 
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Table C.l   Listing of on_f ilter .m 

function q_on = on_filter(qO,p,m,N,ph); 
, Usage: q_on = on_filter(qO,p,m,N,ph) 
,wave 
i qO is the two-scale sequence, 
, p is the dilation factor (3) 
, m is the degree of the B-spline (2) 
N is the number of points in the fft and ifft calculations, should 

be power of 2. Increasing N yields more accurate filter 
coefficients. (256) 

ph is an optional argument which represents the zero index of qO. (1) 

The resulting filter coefficients, q_on, satisfy the pseudo two-scale 
relationship: 

\psi_{l,0} = \sum_k q_on(k) \phi_{0,k} 

so that the normalization constant is included with the 
coefficients. That is, sum(q_on)=sqrt(p). 

if nargin < 5, ph=l; end 
if nargin < 4, N=256; end 
if nargin < 3, m=2;  end 
if nargin < 2, p=3;  end 

'/.set the defaults 

'/.length of the wavelet sequence 

y,the numerator of the filter 

L=length(qO); 
Nm=b_spline(2*m,i:2*m-i); 
'/. 
E=zeros([l,N]); 
E(l:2*m-l)=Nm; 
E=fft(rshift(E,m-l)); 
'/. 
'/, set up the unsampled sequence for the denominator 
'/. 
x=conv(Nm,corr(qO,qO)); 
k=l:length(x); 
[v,z]=max(x); 
zid=find(rem(k-z,p)"=0); 
x(zid)=zeros(size(zid)); 
'/. 
d = zeros([l,N]); 
d(k)=x;d=rshift(d,z-l); 
D = fft(d); 
'/.denominator 
w=exp(i*2*pi*(ph-l)*(0:N-l)/N); '/.phase adjustment for the zeropoint of qO 
Q_on = sqrt(E./D) .*fft(qO,N).*w;'/,pointwise calculate the filter 
q_on = fftshift(ifft(Q_on));   '/.ifft to find the coefficients 
if isreal(qO), q_on=real(q_on);end 

'/.find the zero point 

'/.insert zeros 

'/.initializes the denominator sequence 
^correctly positions the coefficients 
'/.Fourier domain representation of 
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matlab> p=3, m=2; gp=[2 -5 6-5 2]; 

matlab> w.filter = on_filter(gp, p, m); 

where the number of taps in the wavelet (detail) filter would default to 256 since it was 

unspecified. ■ 

There are several routines which are used in the routine listed above. For completness, 

they are listed here. The corr routine returns the unbiased correlation of two row vector 

arguments. 

Table C.2   Listing of corr.m 

function x=corr(a,b) 
'/, CORR returns the correlation between a and b. The first argument 
'/, is flipped (lr) and convolved with the second. 
'/,  Arguments must be row vectors otherwise a simple 
7,  convolution of the two is returned. 
index=length(a):-1:1; 
x=conv(a(index),b); 

The b_spline routine is used to calculate 5-spUnes at specific points. The points most 

often of interest are the integers. 

The rshif t routine returns a right-shifted version of its row-vector argument. Values 

are wrapped during the shift. 
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Table C.3   Listing of b_spline .m 

•/.BSPLINE   This function calculates the value of the m-th order cardinal 
*/, B-spline when evaluated at x:    N_m(x) 
*/. 
*/, N_l(x) is the characteristic function on [0,1). N-m(x) is defined 
*/, recursively by 
*/. 
•/, N_<m>(x) = \int_0~l N_{m-l}(x-t) dt,   m > 1. 

'/. 
*/, This function evaluates the spline by using equation 4.2.4 in Chui's 
7,  _A_Introduction_to_Wavelets_. 
'/. 
function S=b_spline(m,x) 
if m==l, S = ones(size(x)); i=find(floor(x)); S(i)=zeros(size(i)); 
else S = (x.*b_spline(m-l,x)+(m-x).*b_spline(m-l,(x-l)))/(m-l); 

end 

Table C.4 Listing of rshift .m 

function y = rshift(x,i) 
*/, returns the periodic version of x right-shifted 
V. by >i' 
*/. 
n=length(x); 
y=x(rem((l:n)+i-l+n,n)+l); 
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Appendix D.   Calculation of Semiorthonormal B-Spline Wavelets and Detail 

Filter 

This appendix provides the specific MATLAB code used in the calculation of the 

semiorthogonal spline wavelets from Chapter IV. The orthogonalized versions of these wave- 

lets are used for the calculation of feature vectors for the p = 3 cases in Chapter VI (both 

MRA and RRA). The theory behind these calculations was discussed in Chapter IV and this 

appendix will provide the theoretical detail necessary to correlate the code with the theory. 

There are two primary parts of the calculation. The first is the calculation of the 

semiorthogonal wavelets via the nullspace vectors of the approximation projection matrix. 

Following the example from Chapter IV, consider the following code fragment: 

As was mentioned in Chapter IV, the nullspace vectors from the calculation are unit 

norm, from which two integer-valued nullspace vectors can be formed via adding and sub- 

tracting flipped versions of one another. We know the resulting nullspace vectors span the 

nullspace of the matrix since they are clearly linearly independent and there are two vectors 

when the dimension of the nullspace is also two. It is interesting to note that we could 

have created symmetric semiorthogonal wavelet from v2 and the antisymmetric one from 

vl. However, the resulting vectors would have been identical. 

The second phase of the calculation is to transform the semiorthogonal wavelets into 

orthogonal ones via the orthonormalization trick. The technique to do this is described in 

detail in Chapter IV, but the actual code which implements the calculation is provided in 

Table D.2. 

The calculation detailed in Table D.2 yields the compactly supported sequence sq_r which 

is plotted in its normalized form in Figure 4.3. The corresponding integer-value coefficients 

are listed in Table D.3. 
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The final orthonormal wavelets sq_gl and sq_g2 were calculated by orthonormalizing 

sq_ql and sq_r, respectively. The choice to calculate sq_r from sq_q2 was made arbitrarily. 

It could have just as well been calculated from sq.ql with the final orthonormal wavelets 

being calculated from sq_r and sq_q2. The semiorthogonal wavelet sq_r would generally be 

different, as would the resulting orthonormal wavelets. 

For larger dilation factors, there are more wavelets and more nullspace vectors from 

which to form semiorthogonal wavelets. Forming symmetric and antisymmetric semiorthog- 

onal wavelets from the nullspace vectors may not necessarily result in a linearly independent 

set. Furthermore, some vectors may possibly be formed from linear combinations of the 

fcp-shifted versions of the others where fc is an arbitrary integer. This means that vector lies 

in the space spanned by the others, where "space" means the linear span of all p-shifts of 

the particular wavelet. 

These two conditions do not pose any significant problems since they will become 

apparent during the orthonormalization process. The resulting vector will be zeroed which 

would indicate the condition. In fact, for larger dilation factors with many more wavelets, 

it may well be a sound engineering practice to eliminate those wavelets which have values 

close to zero, i.e. not orthogonal enough to the previous wavelets and the spaces they span. 

There is a great deal of flexibility in designing the wavelets which widens the engineering 

trade space for specific applications. 
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Table D.l    MATLAB Example Illustrating Calculation of Nullspace Vectors from Approxi- 
mation Projection Matrix 

matlab>    A=[12 6 1 0 0;  6 12 16 12 6;  0 0 1 6 12] 
A = 

12    6 1 0 0 
6   12 16 12 6 
0    0 1 6 12 

matlab> q=null(A) 
v = 

-0.3776 0 
0.8115 -0.0864 
-0.3381 0.5183 
-0.2480 -0.7775 
0.1522 0.3455 

matlat» vl=v(:,1)'; v2=v(:,2)'; 
matlab> ql=vl+fliplr(vl) '/, create the antisymmetric s.o. wavelet sequence 
ql = 

-0.2254 0.5635 -0.6762  0.5635 -0.2254 

matlab> q2=v2-fliplr(v2) 'I,  create the antisymmetric s.o. wavelet sequence 
q2 = 

-0.3455   0.6911       0  -0.6911   0.3455 

matlab> ql=2*ql/ql(l) '/, renormalize to get integer values 
ql = 

2.0000  -5.0000   6.0000  -5.0000   2.0000 

matlab> q2=q2/q2(l)   '/, renormalize to get integer values 
q2 = 

1.0000  -2.0000       0   2.0000  -1.0000 
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Table D.2    MATLAB Example Illustrating Calculation of Orthonormal Wavelets from a Lin- 
early Independent Set of Semiorthogonal Wavelets 

*/, Linear spline, p=3 

X 
N=256; 
p=3;m=2; 
sq_ql=[12-5 6-5 2 0]; X set up the s.o. wavelet sequences 
sq_q2=[l 1-2 0 2-10]; 
X 
sq_Nm=[m,b_spline(2*m,l:2*m-l)]; X the autocorr of the lin spline 
X 
sq_El=sq_conv(sq_Nm,sq_corr(sq_ql,sq_ql)); 
sq_B=sq_conv(sq_Nm,sq_corr(sq_ql,sq_q2)); 
X 
sq_El=sq_ups(sq_downs(sq_El,p),p); 
sq_B=sq_ups(sq_downs(sq_B,p),p); 

X 
sq_r = sq.sub(sq.conv(sq_El,sq_q2),sq_conv(sq_B,sq.ql)); 

X 
[g2z,g2]=sq_strip(sq_r); 
[glz,gl]=sq_strip(sq_ql); 
X 
gl_on=on_filter(gl,p,m,N,glz);sq_gl_on=[N/2+l,gl_on]; 
g2_on=on_filter(g2,p,m,N,g2z);sq_g2_on=[N/2+i,g2_on]; 

Table D.3 List o : sq _rVaJ ues 
Index -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 
Value 0 3 -12 36 24 -123 0 123 -24 -36 12 -3 0 
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Appendix E.   Calculation of Feature Vectors and SEI Processing 

This appendix contains much of the MATLAB code used to implement the processing 

and classification of the radar pulses for the specific emitter identification problem described 

in Chapter VI. There are two basic types of processing here: the construction of feature 

vectors from the sampled radar pulses, and the classification of those radar pulses using the 

feature vectors. The theory behind the processing is mostly contained in Chapter VI; this 

appendix augments that information with specific details. It is not intended to substitute. 

E.l    Feature Vector Construction 

For the purposes of multiple classifications, feature vectors were formed from the raw 

sampled radar pulses and stored in intermediate files so that the feature vectors would 

not have to be constructed each time a classification was performed. This was especially 

important when the training sets were changed from run to run. Each type of processing 

had a set of MATLAB files which contained the feature vectors associated with that type of 

processing. The code listing in Table E.l is a typical example of the code used to construct 

feature vector files for a specific type of processing. In this instance, feature vector files are 

contructed for the RRA processing with p = 3, q = 2, m = 2, and 3 levels of decomposition. 

Some items to note when evaluating this code. The MATLAB file rf _3_2_2 .mat contains 

the actual RRA filters which are made global on the line following the inclusion of the file. 

The resulting output feature vector files have the form e_rra_k_j .mat where k and j represent 

the apple (radar) number and data set, respectively. The apple number is 1, 2, 3, or 4 to 

correspond, respectively, to golden, granny, ida, and mac. 

Table E.l    Listing of e_rra.m for p = 3, q = 2, m = 2, and 5 decomposition levels 

*/, script file to calculate feature vectors 
*/, from the various data sets 
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x 
apples  = str2mat('gold','gran','ida', 'mac'); 
num_apples = 4; 
num_datasets = 3; 
decomp_levels = 5; 
'/. 
'/. Load the filter for the RRA entropy calculation 

x 
load rf_3_2_2 
global sq_hp_on sq_hq_on sq_gi_on sq_g2_on 
X 
'/, Setup the loops for the various data sets 
X 
for k = l:num_apples, for j=l:num_datasets 

dataset = [deblank(apples(k,:)),'_',int2str(j)]; disp(dataset) 
eval(['load ',dataset]); 
eval(['c = '.dataset,'";']); 
sq_c = [ones(n_pulses,1),c]; 

X 
X Setup the various data structures 

X 
entropy = zeros((p-i)*decomp_levels,n_pulses); 
for 1 = 1:decomp_levels 

sq_di = sq_downs(sq_corr2(sq_gl_on,sq_c),p); 
sq_d2 = sq_downs(sq_corr2(sq_g2_on,sq_c),p); 
sq_c = sq_downs(sq_corr2(..• 

sq_hp_on,sq_conv2(sq_hq_on,sq_ups(sq_c,q))) ,p); 

[Dz,D]=sq_strip(sq_dl); clear Dz 
for ii = l:n_pulses, 

D(ii,:)=D(ii,:)/norm(D(ii,:)); 
X Normalize the detail coefficient sets 

end 
D=D.*D; '/, Calculate the pointwise square of the sequences 
[row,col] = find(D==0); X Find the zero elements for handling 
for jj = 1:length(row), 

D(row(jj),col(jj))=l; 
end 
D=D.*log(D); X The actual entropy calculation 
entropy((p-l)*l-l,:) = -sum(D'); '/, Store in the data structure 

[Dz,D]=sq_strip(sq_d2); clear Dz 
for ii = l:n_pulses, 

D(ii,:)=D(ii,:)/norm(D(ii,:)); 
X Normalize the detail coefficient sets 

end 
D=D.*D; X Calculate the pointwise square of the sequences 
[row,col] = find(D==0); X Find the zero elements for handling 
for jj = i:length(row), 

D(row(jj),col(jj))=l; 
end 
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D=D.*log(D); '/, The actual entropy calculation 
entropy((p-1)*1,:) = -sum(D'); '/, Store in the data structure 

end '/.  '1'  loop 

eval(['save ','e_rra',int2str(k),'_',int2str(j),' entropy ... 
decomp.levels dataset p q m'])j 

end */,  ' j'  loop 
end */. 'k' loop 

E.2    Classification 

Classification for a particular type of processing involves selecting a training set and 

at test set. The following MATLAB script forms the shell of a typical classification run. 

Table E.2   Listing of s_cnfrra.m for p = 3, q — 2, m = 2, and 5 decomposition levels 

'/, Script file to calculate the confusion matrices 
'/. of the RRA; 5 level decomposition 
train_mat=[.. '/. A text matrix constructing input file names 
'123 ';'123 ' ;'123c' '123c';... 
'12 ';'12 ' ;'12 ' '12 ';.. 
'12c »;'12c ' ;'12c ' '12c ';.. 
'13 ';'13 ' ;'13 ' '13 ';.. 
'13c ';'13c ' ;'13c » '13c ';.. 
'23 ';'23 ' ;'23 ' '23 ';.. 
'23c ';'23c ' ;'23c ' '23c ';.. 
'1  ';'l  ' ;'l  ' '1  ';•• 
Mc ';'lc ' ;' lc ' 'lc ';.. 
'2  ';'2  ' ;'2  ' '2  ';.. 
'2c ';'2c ' ;'2c ' '2c ';.. 
'3  ';'3  ' ;'3  ' '3  ';.. 
'3c ';'3c ' ;'3c ' '3c ']; 
test_mat=[... */. i {  text matrix constructing input file names 
'123 ';'123c' ;'123 ' '123c';... 
'12 ';'12c ' ;'3  ' '3c ';.. 
'12 ';'12c ' ;'3  ' '3c ';.. 
'13 ';'13c ' ;'2  ' '2c ';.. 
'13 ';'13c ' ;'2  ' '2c ';.. 
'23 ';'23c ' ;'l  ' 'lc ';.. 
'23 ';'23c ' ;'l  ' 'lc ';.. 
'1  ';'lc ' ;'23 ' '23c ';.. 
'1  ';'lc ' ;'23 ' ,'23c ';.. 
'2  ';'2c ' ;'13 ' ;'13c ';.. 
'2  ';'2c ' ;'13 ' ;'13c >;.. 
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'3  ';'3c ';'12 >;'12c ';... 
'3  ';'3c ';'12 ';'12c ']; 
'/. 
n_apples = 4; '/, The number of apples 
[n_runs, dummy] =size(test_mat) ; 'I,  Sets up n_runs 
o_rate_mat = zeros(n_runs,i); '/, Initializing the overall rate matrix 
rate_mat = zeros(n_runs,n.apples); '/, Initializing the rate matrix 

*/. 
for k=l:n_runs, 

train_string = deblank(train_mat(k,:)); 
'/, Sets the string corresponding to the training files 

test.string = deblank(test_mat(k,:)); 
*/, Sets the string corresponding to the testing files 

[confusion,rate,o_rate] = e.class(train.string,test.string); 
*/, Calls the routine which performs the classifications and 
'/, calculates the confusion matrix 

eval(['cnf_',train_string,'_',test_string,' = confusion;']); 
'/, Sets the cnf_xxx_yyy variable as the confusion matrix 

rate_mat(k,:) = rate; 
o_rate_mat(k,:) = o_rate; 

end 

The majority of the processing is performed in the routine e.class.m which is listed 

in Table E.3. This routine performs all of the classifications regardless of feature vector size 

or processing source. The only tricky item to note is the use of the train_with_culled and 

test_with_culled variables. If these variables are set, only the subset of the feature vectors 

corresponding to the culled data is used for in the training or testing. 

Table E.3   Listing of e.class .m 

function [confusion,rate,overall_rate] = e_class(trainset,testset) 
*/. 
'/. This function set up for RRA classifications 

'/. 
datatype = 'rra'; 
n_apples = 4; 
'/. 
apples = str2mat('gold','gran','ida','mac'); 
train_with_culled = 0; 
test_with_culled = 0; 
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'/. 
l_trn = length(trainset); 
l_tst = length(testset); 

•/. 
if lower(trainset(l.trn))=='c', 
train_with_culled = 1; 
l_trn = l_trn - i; 

end 
if lower(testset(l_tst)) =='c', 
test.with,culled = 1; 
l_tst = l_tst - 1; 

end 
X 
for k = l:n_apples, for j = l:l_trn, 

e_trn_set = str2mat(e_trn_set.... 
['e.'.datatype,int2str(k),'_'»trainset(j)]); 

end,end 
e_trn_set = e_trn_set(2:j*k+i,:); 

X 
for k = l:n_apples, for j = l:l_tst, 

e_tst_set = str2mat(e_tst_set,... 
['e.',datatype,int2str(k),'_',testset(j)3); 

end,end 
e_tst_set = e_tst_set(2:j*k+l,:); 

X 
confusion=zeros(n_apples,n_apples); 
e_m = zeros(10,n_apples); 
e_v = zeros(10,n_apples); 
X 
%    CALCULATING MEANS AND VARIANCES 
X 
for k = l:n_apples, 

e = []; 
for j = l:l_trn, 
tr.file = e_trn_set((k-i)*l_trn+j,:); 
eval(['load ',tr.file]); 
if train.with_culled, 
eval([tr.file,'=',tr.file,'(:.c.index);']); 

end 
eval(['e = [e,',tr.file,'];']); 

end X j loop 
e_m(:,k) = mean(e')'; 
e_v(:,k) = std(e')'."2; 

end X k loop 
X 
•/. CALCULATING CLASSIFICATIONS 

X 
confusion = zeros(n_apples,n_apples); 

X 
for k=l:n_apples 
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E= [] ;    */, Clear the entropy matrix 
for j=l:l_tst, 

tst.file = e_tst_set((k-l)*l_tst+j,:); 
evaKC'load ' ,tst_file]); 
if test_with_culled, 
eval([tst_file,'=',tst_file,'(:,c_index);']); 

end 
eval(['E = [E,',tst_file,'];']); 

end '/, j loop 

[rs.cs] = size(E); v = ones(l,cs); 
class = zeros(cs,n_apples); 

for l=l:n_apples, 
hh = E-e_m(:,l)*v; 
class(:,l) = i/sqrt(prod(e_v(:,1))) * ... 
exp(-0.5 * diag(hh' * diag(l./e_v(:,1)) * hh)); 

end '/,    1 loop 

[val.indx] = max(class'); 

for l=l:n_apples, 
confusion(k,l) = length(find(indx==l)); 

end 

end '/,  k loop 
rate = diag(confusion)'./sum(confusion'); 
overall.rate = sum(diag(confusion))/sum(sum(confusion)); 
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